July 3, 2023

Modeling the Performance of Early Fault-Tolerant Quantum Algorithms

  • Peter Johnson

Archismita Dalal, Qiyao Liang, Yiqing Zhou


Progress in fault-tolerant quantum computation (FTQC) has driven the pursuit of practical applications with early fault-tolerant quantum computers (EFTQC). These devices, limited in their qubit counts and fault-tolerance capabilities, require algorithms that can accommodate some degrees of error, which are known as EFTQC algorithms. To predict the onset of early quantum advantage, a comprehensive methodology is needed to develop and analyze EFTQC algorithms, drawing insights from both the methodologies of noisy intermediate-scale quantum (NISQ) and traditional FTQC. To address this need, we propose such a methodology for modeling algorithm performance on EFTQC devices under varying degrees of error. As a case study, we apply our methodology to analyze the performance of Randomized Fourier Estimation (RFE), an EFTQC algorithm for phase estimation. We investigate the runtime performance and the fault-tolerant overhead of RFE in comparison to the traditional quantum phase estimation algorithm. Our analysis reveals that RFE achieves significant savings in physical qubit counts while having a much higher runtime upper bound. We anticipate even greater physical qubit savings when considering more realistic assumptions about the performance of EFTQC devices. By providing insights into the performance trade-offs and resource requirements of EFTQC algorithms, our work contributes to the development of practical and efficient quantum computing solutions on the path to quantum advantage.

Peter Johnson
Zapata Author

Peter Johnson , Ph.D.

Lead Research Scientist & Co-Founder