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Progress in fault-tolerant quantum computation (FTQC) has driven the pursuit of practical appli-
cations with early fault-tolerant quantum computers (EFTQC). These devices, limited in their qubit
counts and fault-tolerance capabilities, require algorithms that can accommodate some degrees of
error, which are known as EFTQC algorithms. To predict the onset of early quantum advantage,
a comprehensive methodology is needed to develop and analyze EFTQC algorithms, drawing in-
sights from both the methodologies of noisy intermediate-scale quantum (NISQ) and traditional
FTQC. To address this need, we propose such a methodology for modeling algorithm performance
on EFTQC devices under varying degrees of error. As a case study, we apply our methodology
to analyze the performance of Randomized Fourier Estimation (RFE) [1], an EFTQC algorithm
for phase estimation. We investigate the runtime performance and the fault-tolerant overhead of
RFE in comparison to the traditional quantum phase estimation algorithm. Our analysis reveals
that RFE achieves significant savings in physical qubit counts while having a much higher runtime
upper bound. We anticipate even greater physical qubit savings when considering more realistic
assumptions about the performance of EFTQC devices. By providing insights into the performance
trade-offs and resource requirements of EFTQC algorithms, our work contributes to the development
of practical and efficient quantum computing solutions on the path to quantum advantage.

I. Introduction

Despite significant experimental and theoretical
progress [2, 3], noisy intermediate-scale quantum (NISQ)
devices have yet to exhibit the capacity to solve practical
real-world problems with valuable outcomes. A promis-
ing avenue towards achieving practical quantum advan-
tage lies in the development of architectures that can
support large-scale fault-tolerant quantum computations
(FTQC) [4]. By incorporating robust fault-tolerance ca-
pabilities, we can suppress errors in our computations to
an arbitrary extent. However, this comes at the cost of
resources that far exceed the capabilities of present-day
devices by several orders of magnitude. Projections by
researchers indicate that millions to billions of physical
qubits would be required to outperform classical com-
puters in tasks such as factoring and ground state energy
estimation [5–7].

There exists a substantial discrepancy between the
capabilities of today’s quantum devices and the pro-
jected resource requirements for practical large-scale
fault-tolerant architectures. This discrepancy motivates
the question: how will the intermediate generation of
devices, positioned between NISQ and FTQC, deliver
practical advantage? Such devices have recently been
referred to as early fault-tolerant quantum computers
(EFTQC) [8, 9]. Notably, EFTQC devices would pos-
sess a limited number of physical qubits, thus imposing
constraints on the distance of the error-correcting codes
they can support. These deviate from the conventional
assumptions of fault-tolerant quantum computing, where

such resources are presumed to be infinitely scalable.
A recent thrust in the field of quantum computing has

been the development of EFTQC algorithms tailored to
address the above limitations of EFTQC devices [1, 8–
17]. So far, two key considerations are central to the
pursuit of practical value using EFTQC algorithms. The
first is developing quantum algorithms that reduce the
number of qubits and operations per circuit, often at
the expense of increased circuit runs and consequently
extending the runtime [8, 10, 12, 13, 17]. The second
is designing quantum algorithms such that they are ro-
bust against gate and measurement errors [1, 10, 11, 18].
These recent advancements showcase the potential appli-
cations of EFTQC devices, further motivating our previ-
ously posed question. An essential next step is to develop
methodologies for assessing the performance of these al-
gorithms, enabling a deeper understanding of how inter-
mediate devices between NISQ and FTQC can be lever-
aged to attain practical value.
In this work, we develop such a methodology to achieve

the following:

• A proof that quantifies the performance of a ro-
bust phase estimation algorithm that interpolates
between using a single oracle call (suited for the
high-noise NISQ setting) and using many oracle
calls per circuit (suited for the low-noise FTQC set-
ting) (see §VA)

• A numerical demonstration of the suitability of this
algorithm for EFTQC devices in that it can reduce
by an order of magnitude the number of physical
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qubits required for large instances of phase estima-
tion at the cost of an increase in runtime by several
orders of magnitude (see §VB)

To establish these results, we introduce a modularized
methodology designed to assess the impact of generic
circuit-level errors on a broad class of quantum algo-
rithms. To demonstrate the effectiveness of our method-
ology, we analyze a variant of the Randomized Fourier
Estimation (RFE) algorithm [1] for phase estimation.
The RFE algorithm shares a similar structure with other
EFTQC-suited algorithms, such as those used for ground
state energy estimation [12, 14, 15] and property estima-
tion [13]. The key feature common to these algorithms
is the utilization of signals derived from Hadamard test
outcomes, which makes our methodology applicable and
adaptable to various cases within the EFTQC framework.

Our objective is to gain a comprehensive understand-
ing of how errors impact the RFE algorithm. By doing
so, we aim to leverage this understanding and extend it to
algorithms designed for tasks beyond phase estimation.
While previous studies have investigated the resilience of
algorithms for quantum phase estimation [19], we specif-
ically focus on analyzing the RFE algorithm for two key
reasons. Firstly, the RFE algorithm exhibits broad appli-
cability and generalizability, as highlighted earlier, mak-
ing it a suitable candidate for our analysis. Secondly,
its ability to smoothly interpolate between the high- to
low-noise settings makes it well-suited for the EFTQC
regime.

The paper is organized as follows. We begin in §II
by introducing the RFE algorithm and our modifications
to the algorithm for the purpose of this study. In §III,
we outline the framework of our methodology, which we
apply to analyze the runtime performance of the RFE al-
gorithm. Specifically in §IV, we develop a chain of noise
models from physical errors to algorithmic errors, and
study the impact of these errors on the performance of
RFE in §VA. Based on these results, we provide a fault-
tolerant resource estimation, comparing RFE to the tra-
ditional quantum phase estimation algorithm in §VB. Fi-
nally in §VI, we conclude by highlighting our key results
and provide an outlook of this work.

II. Randomized Fourier Estimation (RFE)

In this section, we introduce a variant of the RFE al-
gorithm proposed in Ref. [1]. The RFE algorithm is used
to solve the task of phase estimation, in which the goal is
to estimate the phase angle θ defined by U |ψ⟩ = eiθ|ψ⟩,
assuming the ability to prepare the eigenstate |ψ⟩ and
to implement controlled-unitaries c-U . The traditional
approach to this problem is the quantum phase estima-
tion (QPE) algorithm [20], which achieves the optimal
performance asymptotically. However, the realization of
the QPE algorithm requires multiple ancillary qubits and
many high-fidelity quantum operations, both of which

may be prohibitively-costly given hardware constraints
in the early fault-tolerant regime.
Given these constraints, alternative schemes for phase

estimation have been proposed for near-term to early
fault-tolerant devices [12, 14, 21, 22]. In our study, we fo-
cus on the RFE algorithm [1], the performance of which
can be analytically studied. Specifically, we will analyze
a variant of the original RFE algorithm with slight mod-
ifications to simplify our analysis, as introduced later in
this section. As the modifications made do not funda-
mentally change the mechanism of the algorithm, we will
henceforth refer to the modified version of the algorithm
as “RFE” throughout the paper.

Measurement in σϕ

|0⟩ H S(ϕ) H

|ψ⟩ Uk

FIG. 1 Diagram of the circuits used in the Random-
ized Fourier Estimation (RFE) algorithm. The parame-
ter k is uniformly randomly chosen among {0, . . . ,K−1}
for each iteration. A key feature of the algorithm is
that the parameter K controls the maximal circuit depth
and is set to accommodate different degrees of error
in the c-U operation: high error implies small K (low
depth) and many repetitions, while low error warrants
the use of large K (high depth) and fewer repetitions.
The boxed-up elements in blue can be collectively inter-
preted as a measurement with respect to the observable
σϕ = cos(ϕ)σx − sin(ϕ)σy, where σx and σy are the con-

ventional Pauli operators and S(ϕ) =

[
1 0
0 exp(iϕ)

]
.

The basic intuition behind this algorithm is summa-
rized as follows. Each measurement outcome z = ±1
is generated from a sampled parameterized Hadamard
test circuit in Fig. 1 with k ∈ {0, . . . ,K − 1}, where K
sets the maximal circuit depth, and ϕ ∈ [0, 2π]. The ex-
pected outcome of the measurement ⟨σϕ⟩ = cos(ϕ)⟨σx⟩−
sin(ϕ)⟨σy⟩ = cos(kθ + ϕ) is an oscillatory function of k
and θ and becomes the desired signal exp(ikθ) when av-
eraged over a uniform distribution of ϕ between 0 and 2π

(i.e. 1
2π

∫ 2π

0
2 cos(kθ + ϕ) exp(−iϕ)dϕ = exp(ikθ)).

To estimate the θ encoded in the frequency of the
signal, we can construct from each outcome z an un-

biased estimate f̂j of the expected discrete Fourier trans-
form fj of signal g(k) (= exp(ikθ)). In the Fourier do-
main j ∈ {0, . . . , J − 1}, the estimate is expressed as

f̂j(k, ϕ, z) = 2ze−i2πkj/Je−iϕ. (1)

Given enough samples, we expect the magnitude of the

averaged f̂j to peak at a frequency close to θ. In the
noiseless case, this peak will occur within the Fourier
resolution 2π/J from the true θ, where we later set the



3

↔ϵ

Θ̂ = ̂θJ
2π

(a)

(b)

FIG. 2 (a) Real and imaginary components of the
expected (noiseless) signal Re[g(k)] = cos(kθ) and
Im[g(k)] = sin(kθ) as a function of the circuit depth k.
(b) The magnitude of the expected Fourier transformed
signal |fj |. The green shaded region shows the accept-

able range of values for θ̂, and the red dashed vertical line
shows the true peak at index Θ = θJ

2π . The solid line rep-
resents the analytical functional forms where k and j are
treated as continuous variables for easier visualization.
The discrete values of g(k) and |fj | are marked with dots.
The two green dots in (b) correspond to j = ⌊Jθ/2π⌋ and
⌈Jθ/2π⌉, which we refer to as “adjacent frequencies.”

parameter J such that the Fourier resolution matches the
desired accuracy of the algorithm ϵ.

This peak frequency is then used as an estimate of

θ, denoted θ̂. Fig. 2(a) shows the real and imaginary
components of the signal g(k) as a function of k. The
magnitude of the Fourier transformed signal |fj | is then
plotted in Fig. 2(b) as a function of j, where the peak

occurs at an index near θJ/2π corresponding to the true
frequency θ.
The algorithm that we introduce here differs from that

of Ref. [1] in two regards. First, rather than taking sam-
ples corresponding to the real and imaginary parts of g(k)
separately by setting ϕ = 0 or π/2, ϕ is chosen uniformly
randomly such that we can construct an unbiased esti-
mator for g(k) with a single shot. This simplifies the al-
gorithm analysis without any changes in its performance.
Second, the more substantial change is introduced to

accommodate a more realistic noise model as developed
in §IV. This noise model results in an exponential atten-
uation (as a function of k) of the outcome probabilities,
converging towards a uniform two-outcome distribution
at large k, similar to that of an unbiased coin toss. By
appropriately setting the maximal value of k, i.e. K, we
can minimize the impact of this attenuation on our esti-

mated θ̂ from the signal.
In Ref. [1], the parameter K was used to set both

the maximum value of k and the Fourier basis resolu-
tion 2π/K. This can be an issue in the case when the
attenuation is strong and high accuracy is required: mea-
surement outcomes for large k are uninformative because
they are drawn from a nearly uniform distribution. To
address this issue, we allow these two values to differ; K
still labels the maximum value of k, while a new param-
eter J is used to set the Fourier resolution. Then, the
high accuracy and high noise case is accommodated by
setting J large and K small.
We now elaborate on why our algorithm works in the

noiseless limit, which will provide intuition for its perfor-
mance in the noisy case. One can calculate the probabil-
ity of measuring the outcome z in the Hadamard circuit
of Fig. 1 as

P (z|k, ϕ; θ) = 1

2
(1 + z · cos(kθ + ϕ)), (2)

which is an oscillatory function of k with frequency θ.
The two classically sampled variables are drawn uni-
formly: P (k) = 1/K and P (ϕ) = 1/2π, where the for-
mer distribution is discrete while the latter is continuous.
Using these distributions, the expected value of our con-
structed estimator (1) is calculated to be

E[f̂j(k, ϕ, z)] =
K−1∑
k=0

∫
dϕ

∑
z=±1

P (k)P (ϕ)P (z|k, ϕ; θ)f̂j(k, ϕ, z) =
1

K

1− aK

1− a
, (3)

where a := eiθ−i(2πj/J). For j ∈ R+, the expectation (3)
is maximized at j = θJ/2π. Whereas for j ∈ Z+, i.e.
in a discrete Fourier transform setting, and assuming
K ≤ J , the expectation achieves its maximum mag-
nitude at ⌊θJ/2π⌋ or ⌈θJ/2π⌉ (or precisely at θJ/2π
if θJ/2π ∈ {0, . . . , J − 1} ). Consequently, by setting

J = 2π/ϵ we can then guarantee that the maximum of
the expected discrete Fourier transform occurs at a fre-
quency that is less than ϵ away from the true θ. The
maximal circuit depth K will be chosen according to
the target accuracy ϵ and a parameter λ (introduced in
Eq. (12)) that characterizes the error strength in the c-U
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FIG. 3 Framework of our methodology.

operation. Qualitatively, K is chosen to monotonically
increase with 1/ϵ and 1/λ, which is described in further
details in Section VA.

Our algorithm estimates the value of θ by using an av-
erage over multiple Fourier signal estimates (1). With

M estimates f̂
(i)
j generated independently, their aver-

age will concentrate about the expected value fj :=

E[f̂j(k, ϕ, z)] (3), and a corresponding estimate of θ is
given by

θ̂ =
2π

J
argmax

j

(∣∣∣∣∣ 1M ∑
i

f̂
(i)
j

∣∣∣∣∣
)
. (4)

This concentration will be addressed quantitatively in
§VA. The algorithm succeeds, i.e. yields an estimate

such that |θ̂ − θ| ≤ ϵ, if one of the “adjacent” frequen-
cies (⌊θJ/2π⌋ or ⌈θJ/2π⌉) achieves the largest magnitude

among all Fourier estimates f̂j =
1
M

∑
i f̂

(i)
j . In expecta-

tion, one of these “adjacent” frequencies (shown as the
two green dots in Fig. 2(b)) will achieve the largest mag-
nitude, with a finite gap between it and the magnitudes of
the non-adjacent frequencies (points that fall outside of
the green shaded region). Hence, with sufficiently many
samples M , the probability of failure of the algorithm
can be made less than any finite failure probability δ.

III. Framework

In this section we outline our proposed methodology
for connecting the logical error model of an arbitrary
quantum circuit to the success probability of a quantum
algorithm, with the special case analysis of the RFE al-
gorithm introduced in the last section as an example.

Our methodology, depicted in the flowchat of Fig. 3,
can be summarized as follows. We begin by modeling
the effect of error on an algorithmic level from physi-
cal to logical-level error models proposed in §IV. Specif-
ically, in §IVA, we establish a fault-tolerant overhead
model that relates physical error rate pphys to logical er-
ror rate plogical for a surface code of distance d. We then
propose a generic N -qubit logical Pauli error channel in
§IVB and statistically quantify its impact on an N -qubit
quantum circuit of depth D. To achieve this, we assume
that a random N -qubit Pauli error occurs after each layer
of unitaries in our circuit such that the resulting state
is a mixture of random states drawn from a unitary 2-

design. By computing the expected value and variance of
measurement outcomes based on this probability distri-
bution, we gain insights into their statistical properties,
which allow us to develop an algorithmic noise model in
§IVC.

In §V, we investigate the performance of RFE under
the algorithmic noise model proposed in §IVC, namely,
the exponential decay noise. In §VA, we give an up-
per bound on the algorithm runtime performance, and
analyze its scaling with respect to the desired degree of
accuracy ϵ in the presence of various strength of decay
λ. Finally, in §VB, we provide a resource estimation of
the RFE algorithm as compared to the standard QPE
algorithm based on our original fault-tolerant overhead
model proposed in §IVA.

IV. Noise Modeling

A. Fault-tolerant overhead model

We begin by establishing the connection between phys-
ical error rates and logical error rates. Currently, physical
error rates range from 10−3 to 10−4, which are too large
for reliable implementations of the RFE algorithm. To
overcome this, we analyze the performance of our algo-
rithm using lower logical error rates achievable through
fault-tolerant computational protocols. Implementation
error at the circuit (logical) level arise from approxima-
tions in the operations (e.g., gate synthesis) and uncor-
rected errors in the fault-tolerant protocols. The failure
probabilities in both of these cases can be systematically
reduced by paying a cost in the number of physical oper-
ations and, therefore, a cost in runtime. In our analysis,
we assume the operations to be non-approximate, focus-
ing solely on the uncorrected errors in fault-tolerant pro-
tocols as the source of implementation error.

In order to quantify the reduction in error rates from
the physical to logical level, we adopt the model pro-
posed in Ref. [7]. This reduction in error rate comes at
the cost of an increase in time and number of physical
qubits; equivalently, these resources can be thought of
as convertible into error rate reduction. The quality of
this conversion is governed by the ability of the particu-
lar architecture to maintain low physical gate error rates
at scale. A model for this conversion as a function of
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resource overhead d is expressed as

plogical = Ae−Bd, (5)

where the parameters A and B depend on the physical
error rates [7]. The typical values for these parameters
in the case of high (moderate) physical error rates are
A = 0.5(0.4) and B = 1.6(1.1) [7]. The overhead pa-
rameter d can be thought of as the code distance in the
context of a surface code [23]. In this model, the phys-
ical qubit overhead is approximately 2d2. In our subse-
quent analysis, we approximate the logical error model
as a composition of single-qubit depolarizing errors (13),
where plogical (5) represents the depolarizing rate. Based
on these relationships, we can estimate the optimal per-
formance of the RFE algorithm for given architecture
parameters A and B, as we will elaborate in §VA.

B. Logical Gate Error Model

We consider a generic N -qubit Pauli error channel in
order to study the impact of logical errors on the RFE
algorithm. A generic N -qubit Pauli error channel acting
on an N -qubit density matrix ρ can be expressed by the
following Kraus decomposition

Λ(ρ) =

4N−1∑
j=0

pjAjρA
†
j , (6)

where Aj ∈ {I,X, Y, Z}⊗N and pj is the probability of
error Aj occurring. We note that here we have assumed

the most generic Pauli error channel for our logical errors
to follow the convention of most error-correction litera-
ture, which can later be modified into different desirable
error channels based on the set of {pj} of our choosing.

 LayersD

U1  Λ

…

U2  Λ

…
…

…
…  Λ

 Q
ub

its
N

FIG. 4 Abstract circuit diagram of unitaries
U1, . . . , UD interlaced with applications of a generic
N -qubit Pauli error channel Λ in an N -qubit D-layer

random quantum circuit.

Given a quantum circuit that implements the ideal uni-
tary U = UD · · ·U2U1 of depth D, we assume that the
Pauli error Λ interleaves the layers of unitary U1 through

UD, where Ui(ρ) := UiρU
†
i is the superoperator describ-

ing the action of the unitary Ui on the density operator
ρ. The overall noisy circuit is illustrated in Fig. 4. The
outcome state ρf upon applying this noisy circuit to the
initial state ρi is given by

ρf = Λ ◦ UD ◦ · · · ◦ Λ ◦ U1 (ρi) =
4N−1∑
jD=0

· · ·
4N−1∑
j1=0

pjD · · · pj1(AjDUD · · ·Aj1U1)ρi(U
†
1A

†
j1
· · ·U†

DA
†
jD

). (7)

After obtaining the noisy output quantum state (7),
we now focus on the various statistical properties of
the final measurement with respect to an N-qubit
Pauli observable. Here we introduce the notion of
a “trajectory state,” defined as |ψj⟩ ≡ |ψj1...jD ⟩ :=
AjDUD . . . Aj1U1

∣∣0N〉, where j is the index tuple that
includes all of j1, . . . , jD. Each of these trajectory states
|ψj⟩ corresponds to one combination of errors occur-
ring on ρi among the 4ND possibilities with probability
pj = pj1 . . . pjD . Expressing the expectation of an observ-
able P with respect to the state ρf in Eq. (7) in terms of

these trajectory states, we get

⟨P ⟩ = Tr [Λ ◦ UD ◦ · · · ◦ Λ ◦ U1 (ρi)P ] (8)

= p0 Tr [|ψ0⟩ ⟨ψ0|P ] +
4ND−1∑
j=1

pj Tr [|ψj⟩⟨ψj|P ] , (9)

where |ψ0⟩ = UD . . . U1

∣∣0N〉 is the ideal state upon which
no error has occurred. To provide a tractable analysis of
⟨P ⟩, we propose the unitary 2-design model. Under this
approximation, we replace each of the noisy trajectory
states |ψj⟩ with a randomly sampled state from a spher-
ical 2-design [24] (i.e. any distribution over pure states
whose first and second moments match those of the Haar
distribution of unitaries over N -qubits applied to a ref-
erence state). This assumption establishes the statistics
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of ⟨P ⟩, allowing us to compute its mean and variance as

E[⟨P ⟩] = p0⟨ψ0|P |ψ0⟩ and (10)

Var[⟨P ⟩] = 1

2N + 1

4ND−1∑
j=1

p2j , (11)

respectively. By our assumption, each of these noisy tra-
jectories shares the same mean. Consequently, as an in-
creasing number of trajectories are averaged over to form
the second term in Eq. (9), their collective average will
converge towards this mean. A detailed calculation of
the above quantities is provided in Appendix § 1.

Lastly, we briefly mention the potential impact of state
preparation error on our analysis. Small amounts of er-
ror in the initial state will not significantly affect the
results of our paper. However, larger amounts of error
can have a more pronounced effect. For example, if the
initial state is not perfectly prepared in the ground state,
then the peak in Fig. 2 will be suppressed in height and
additional peaks may appear, each with a height propor-
tional to the overlap between the imperfect initial state
and other eigenstates of U. We leave the analysis of phase
estimation in this setting to future work.

C. Logical Gate Error Model to Algorithmic Noise
Model

Based on the statistics of ⟨P ⟩ from Equations (10) and
(11), we propose an algorithmic noise model that cap-
tures the effect of noise as a combination of exponential
decay and random fluctuations on our algorithm. The ex-
ponential decay term stems from the p0 term in the mean
of ⟨P ⟩, whereas the random fluctuation is related to the
variance of ⟨P ⟩. For the RFE algorithm, the impact of
error is to alter the probability (2) of the measurement
outcome z as

Pr(z|k, ϕ; θ) = 1

2
(1 + ze−λk cos(kθ − ϕ) + ηk,ϕ), (12)

where we introduce ηk,ϕ to represent a noise bias, i.e.
random fluctuations, and λ to parameterize an exponen-
tial attenuation of outcome probability with respect to
circuit depth k. Letting ηk,ϕ and λ vary arbitrarily, this
“algorithmic” noise model is completely general and the
algorithm would clearly not succeed in all settings. The
key to establishing a reasonable algorithm performance
is to limit, at least statistically, the magnitude of ηk,ϕ
under different strengths of λ, as we elaborate later in
this subsection.

We now analyze how RFE works in a noisy setting
under our proposed algorithmic noise model (12). Given,
for example, a single-qubit depolarizing error channel

D(ρ) = (1− r)ρ+ r

3
(XρX + Y ρY + ZρZ), (13)

the N -qubit composite error channel is given by

Λ(ρ) = D⊗N (ρ), (14)

a special case of the N -qubit Pauli error channel from
Eq. (6). Upon applying the operation c-U , where U is
assumed to have D layers, k repetitions in the Hadamard
test circuit, the probability of the signal remaining noise-
less at the end is

ptotal = pk0 = (1− r)NDk, (15)

which decreases as a function of c-U depth number k.
From Eq. (10), we learn that the expected value of the
quantum expectation value ⟨P ⟩ decays with the total
probability ptotal after k iterates. This corresponds to
a decay in the signal, i.e.

e−λ = (1− r)ND, (16)

which makes the exponential decay parameter λ that we
introduced in Eq. (12) to be λ = − ln

(
(1− r)ND

)
. Simi-

larly, we can substitute r from Eq. (13) into the variance
expression Var[⟨P⟩] from Eq. (11)

Var[⟨P ⟩] = 1

2N + 1

[(
(1− r)2 + 3(r/3)2

)NDk
− (1− r)2NDk

]
.

(17)

We note that Var[⟨P ⟩] here establishes the expected de-
viation βj on our signal fj in our algorithmic error model
to be discussed next.

(a)

(b)

FIG. 5 Expected Re[g(k)] (a) and |fj | (b) under
the exponential decay noise with decay parameter λ =

0.01, 0.1, 0.5.

Under the effects of random fluctuations and exponen-
tial decay, we now arrive at a noisy expression of the

expected f̂j(k, ϕ, z), similar to the calculation in Eq. (3)

E[f̂j(k, ϕ, z)] = βj +
1

K

(
1− eK(iθ−i2πj/J−λ)

1− eiθ−i2πj/J−λ

)
, (18)
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where βj = Ek[ηj,k] is the expected deviation of our
signal related to the quantity Var[⟨P ⟩]. We delay the
detailed discussion of the variance to Appendix § 1 b.
There, we numerically show that the standard devia-
tion of ⟨P ⟩, σ⟨P ⟩ :=

√
Var[⟨P⟩], is negligible compared to

the signal magnitude ∼ 1 for the parameter settings of
our interest in the EFTQC regime. This means that the
variance can be left out of our algorithmic error model.
Therefore, we set the βj term to 0 for the rest of the
discussion.

The effect of exponential decay on the expected signal
from Eq. (18) is shown as a function of decay strength λ
in Fig. 5. We note that as λ increases, the signal g(k) de-
cays exponentially as a function of circuit depth k, which
results in a flatter spectrum in the expected Fourier sig-
nal amplitude |fj |. This is problematic as the RFE al-
gorithm relies on distinguishing the largest peak in the
signal amplitude as our predicted phase index. A flat-
tened spectrum means that the amplitude contrasts be-
tween neighboring peaks will decrease, and as a result,
more measurements are needed to overcome shot noise
in order to better discern the highest-amplitude point in
the spectrum.

V. RFE Performance Analysis and Discussion

A. Link to Algorithm Performance Analysis

The goal of this section is to establish the connection
between the algorithmic noise model proposed in the pre-
vious section and the algorithm performance guarantee.
As a reminder, the algorithm is said to succeed when the

estimate θ̂ is within ϵ of θ, see Fig. 2(b). Our analy-
sis determines an upper bound on the number of samples
that are needed to ensure success with probability greater
than 1− δ.

The estimated θ̂ is calculated based on the discrete
frequency point 2πj/J corresponding to the highest am-

plitude of |f̂j | (as in Eq. (4)). As a reminder, the consid-
eration of a successful estimate of θ depends on whether
θ is one of the values of 2πj/J or not. In the case when
θ falls onto one of the discrete frequency points, there
are a total of three values of j leading to successful esti-
mates, i.e., j = Jθ/2π, Jθ/2π±1. In the case when θ falls
between two points in the discrete frequency spectrum,
as shown in Fig. 5(b), there are a total of two neigh-
boring points that constitute successful guesses, namely
⌊Jθ/2π⌋ and ⌈Jθ/2π⌉.
Let j∗ indicate the index of the “best estimate,” that

is, the integer closest to Jθ/2π. Any index j that is
more than 1 away from Jθ/2π will not correspond to an
ϵ-accurate estimate according to our criteria for success.
We refer to such estimates as “bad estimates.” Hence,
to guarantee that the algorithm succeeds, it suffices that

|f̂j |2 < |f̂j∗|2 for all j with |j − Jθ/2π| > 1. In other
words, this condition ensures that no bad estimate has

O(1/ϵ2 )

O(1/ϵ)

FIG. 6 This plot shows the runtime (measured in to-
tal number of calls to the c-U operation) as a func-
tion of the target accuracy inverse 1/ϵ in the presence
of various exponential decay errors of strength λ =
0.1, 0.01, 0.001, 0.0001, and 0.00001. As λ decreases, the
runtime transitions from a 1/ϵ2 scaling to a 1/ϵ scaling.
The upper and lower dotted lines show the O(1/ϵ2) and

O(1/ϵ) scaling, respectively.

the largest |fj | so that the algorithm picks one of the
ϵ-accurate estimates. Note that this is not a necessary

condition; the algorithm could succeed even if |f̂j∗|2 were
smaller than that of one of the bad estimates, as long
as the other (or one among the two others) ϵ-accurate
estimate had a magnitude larger than the rest.
The above algorithm success condition can be violated

in the presence of exponential decay noise, the effect of
which is shown in Fig. 5(b). The noise reduces contrast
between neighboring peaks, which can invalidate our suc-
cess condition if not enough measurement samples are
collected to overcome the uncertainty due to shot noise.
One way to counteract this deleterious effect is to perform
extra measurements. Thus the performance of our algo-
rithm can be quantified by establishing an upper bound
on the number of measurements needed to guarantee a
certain success probability of the algorithm, for various
noise strengths and the desired accuracies. We point in-
terested readers to Appendix § 2 for a detailed derivation
of the algorithm performance bound.
We now present the main result of our algorithm per-

formance analysis as follows. For target accuracy ϵ and
exponential decay parameter λ, a success probability
greater than 1 − δ can be ensured by using M samples
satisfying

M ≥ 8W (K(ϵ, λ), 2π/ϵ, λ) log(16π/δϵ), (19)

where W (K,J, λ) is a complicated function whose ex-
plicit form is described in Eq. (94) of Appendix § 2 andK
is chosen as a function of ϵ and λ as described below. The
algorithm performance measured by the runtime upper
bound in units of c-U operations are plotted against 1/ϵ
for various values of λ in Fig. 6. In the low-noise regime,
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the runtime scales as 1/ϵ, which resembles that of the
original QPE algorithm [20]. In the high-noise regime,
the runtime scales as 1/ϵ2. For a moderate amount of
noise, the runtime performance of the algorithm interpo-
lates between the low- and high-noise performance.

Due to the limited coherence time from the exponen-
tial decay, we choose the maximal circuit depth K based
on ϵ and λ, given by K(ϵ, λ) = max{c⌊ 1

c(aλ+ϵb/2π)⌋, 2},
where a, b, c ∈ R+. We note that here we setK to be tun-
able based on λ and ϵ such that the runtime of the algo-
rithm interpolates between the Heisenberg-limit scaling
(i.e. O(1/ϵ)) in the regime of Jλ≫ 1 and the shot-noise-
limit scaling (i.e. O(1/ϵ2)) in the regime of Jλ≪ 1. For
the specific functional form of K, we employ the floor
function and set c = 10 to bypass values of K between 3
and 9, which were numerically found to be suboptimal.
The parameters a = 2 and b = 1.5 were then chosen
within this form to roughly minimize the runtime upper
bound over a range of values of J and λ. We note that
since this functional form of K is empirically derived to
minimize the runtime upper bound, in practice, a more
rigorous treatment for developing an optimal strategy for
choosing K is necessary in the future.

Our analysis of the algorithm in Appendix § 2 differs
from that of [1] in two regards: 1) we separate the roles
of K and J enabling high-accuracy estimates in the high-
noise setting and 2) we take into consideration the cor-

relation between the values of neighboring f̂j , enabling
a reduction in sample complexity in the high-noise (low-
K) setting. These two features enable us to establish a
unifying expression that captures the performance of the
algorithm in a wide variety of scenarios, ranging from
using (effectively) a Bernoulli estimation approach (i.e.
K = 2) to a Heisenberg-limited phase estimation ap-
proach (i.e. K = O(1/ϵ)). A signature of the switch in
the algorithm’s strategy from the Bernoulli to the Heisen-
berg approach to accommodate different scenarios of er-
ror is marked by the cusp in the runtime upper bound of
RFE in Fig. 7.

Finally, we would like to address the issue of determin-
ing the exponential decay parameter λ. Our algorithm re-
lies on some knowledge of λ when setting the appropriate
K(ϵ, λ). This raises the question of whether it is neces-
sary to accurately determine λ and, if not, to what extent
a discrepancy between the presumed and actual values of
λ would compromise the algorithm’s performance. The
precise level of accuracy required to maintain the derived
runtime remains an open question that we defer to fu-
ture investigation. Nonetheless, intuitively, we anticipate
that overestimating λ will result in using more samples
than necessary, while underestimating λ will lead to using
fewer samples than required, thus slightly increasing the
probability of failure. We further highlight that several
established benchmarking techniques, such as random-
ized benchmarking [25] and cross-entropy benchmarking
[26], can be utilized to estimate essential noise parame-
ters like the depolarizing error rate. These estimates can
then be applied to determine the value of λ using Eq. (16)

in our methodology.

B. FT Overhead Estimation Comparison

EFTQC FTQC

FIG. 7 Comparison of runtime (in units of error cor-
rection cycles) between RFE (red) and the traditional
QPE algorithm (blue) as a function of physical qubits
available. While the upper bound on the runtime of RFE
may be higher than the standard approach to QPE, RFE
can be run using an order-of-magnitude fewer physical
qubits. The cusp occurring in the runtime upper bound
of RFE at ∼ 104 physical qubits marks the switch of the

algorithm’s strategy from using K = 2 to K > 2.

As an application of our established performance
bound in Eq. (19), in this section we provide a cost anal-
ysis of implementing the RFE algorithm accounting for
the error correction overhead. Specifically, we aim to
compare the overall runtime performance (measured in
units of QEC cycles) of the traditional QPE versus the
RFE algorithm as a function of the number of physical
qubits required, which relates to distance of the surface
code d as described in Eq. (5).
In Fig. 7, we show this comparison for the case of a log-

ical c-U acting on 100 qubits with a unitary circuit depth
1000, aiming for an accuracy of 0.1% and failure proba-
bility below 1%. One notable characteristic of the tradi-
tional QPE algorithm is that there is a minimal number
of physical qubits/code distance below which the desired
algorithm success probability cannot be achieved (refer
to the detailed derivation in Appendix § 3). Therefore, in
order to implement the traditional QPE algorithm reli-
ably, a certain distance code or number of physical qubits
have to be attained. This is, however, not required by
the RFE algorithm. In principle, a higher runtime cost
can always be paid in exchange for fewer physical qubits
or a lower code distance in implementing the RFE al-
gorithm. This is particularly valuable in the EFTQC
regime, where devices have limited number of physical
qubits, as depicted schematically in the green region of
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Fig. 7.
The RFE algorithm offers the advantage of requiring

an order-of-magnitude fewer qubits compared to the tra-
ditional QPE algorithm. However, Fig. 7 also shows that
the runtime upper bound of RFE in the FTQC regime
is approximately four orders of magnitude larger than
that of traditional QPE. Nevertheless, we expect that the
aforementioned upper bound is conservative for two main
reasons. Firstly, the analysis incorporates several analyt-
ical bounds that result in a more cautious choice of M
than what is likely necessary (a well-known phenomenon
in algorithm analysis). We expect that the empirical run-
time would be several orders of magnitude smaller than
the derived upper bounds and leave an investigation of
this to future work. Secondly, the algorithm itself can be
optimized to enhance performance. Examples of poten-
tial improvements include: 1) tailoring the distribution
from which k is sampled based on the noise characteris-
tics of the device, and 2) employing more sophisticated

fitting strategies for extracting θ̂ from the Fourier trans-
formed data.

VI. Conclusions and Outlook

In summary, we have developed a methodology for sys-
tematically analyzing the performance of a class of quan-
tum algorithms suited for early fault-tolerant quantum
computers. This is motivated by the need to understand
the quantum resources necessary for these algorithms to
achieve quantum advantage. Our approach can be ex-
tended to encompass various error models, fault-tolerant
resource overhead models, and a wide range of quan-
tum algorithms. By offering a generalized framework,
our methodology paves the way for a comprehensive un-
derstanding of resource requirements and performance
trade-offs in the realm of early fault-tolerant quantum
computing.

As an application of our methodology, we analyzed the
performance of the recently proposed RFE algorithm [1].
Studying the circuit-level error under our proposed Haar
trajectory model, we found that the noise can be best de-
scribed by an exponential decay at the algorithmic level.
We developed a variant of this algorithm that interpo-
lates between low-depth and high-depth (based on the
strength of the exponential decay) and analytically de-
rived its runtime upper bound as a function of target
accuracy and failure rate. Studying the algorithm under
a continuum of noise strengths, we found that the run-
time upper bound interpolates between O(1/ϵ2) (shot-
noise limited scaling) and O(1/ϵ) (Heisenberg scaling) in
the high- to low-noise limits.

Based on the runtime upper bound, we then carried out
a fault-tolerant overhead analysis, comparing RFE with
the traditional QPE in the problem instance of 100 logical
qubits. Our analysis showed that the RFE algorithm can
be implemented with an order-of-magnitude fewer phys-

ical qubits than the traditional QPE algorithm, albeit
with a substantial increase in runtime. This tradeoff al-
lows for an earlier onset of practical quantum advantage
in the EFTQC regime, where error correction remains
expensive.
There are several crucial research directions that hold

promise for delivering quantum computation with prac-
tical advantage:
First and foremost, it is imperative to develop more

realistic circuit-level error models. Our methodology re-
lies on the assumption that the sampled Haar trajectory
states are derived from a unitary two-design, or at the
very least, their statistics can be well-approximated by
those of a two-design. To better understand the lim-
itations of this model, further numerical investigations
are required. In future studies, it would be valuable to
develop an empirically-derived model that captures the
expected bias and variance of various circuit-level errors.
We anticipate that the structure of the specific quan-
tum circuits and error models of interest will introduce
non-uniformity in the distribution of noisy trajectories.
This non-uniformity could in principle shift E[⟨P ⟩] and
increase Var[⟨P ⟩], leading to a worse algorithm perfor-
mance than that predicted by the current analysis. By
addressing these aspects, future studies can provide more
realistic noise settings and evaluate the performance of
Randomized Fourier Estimation (RFE) under those set-
tings.
Secondly, there is a need to develop fault-tolerant over-

head models specifically tailored for early fault-tolerant
quantum computers. Recent work [27] has shown that
small deviations of fault-tolerant architectures from the
ideal assumptions can substantially impact the perfor-
mance of quantum algorithms. We anticipate that by
including such realistic models of fault-tolerant architec-
tures into the methodology of this work, the importance
of robust quantum algorithms will be increasingly appar-
ent.
Finally, it is crucial to focus on the development and

analysis of quantum algorithms tailored for EFTQC that
solve practical problems. While progress has been made
in areas like ground state energy and property estima-
tion [12, 13, 15], there remains a wide range of applica-
tions that could greatly benefit from such advancements.
We envision that by extending our methodology to en-
compass existing algorithms and future developments, we
can enable their comprehensive evaluation and enhance
the practical utilization of early fault-tolerant quantum
computers.
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Appendix

1. Statistics of quantum expectation value

a. Expectation value E[⟨P ⟩]

For a generic N -qubit Pauli operator P , the expected value of the quantum expectation value ⟨P ⟩ over all possible
Haar trajectory states sampled from a spherical 2-design is given by

E[⟨P ⟩] = p0E[Tr[P |ψ0⟩⟨ψ0|]] +
4ND−1∑
j=1

pjE[Tr[P |ψj⟩⟨ψj|]] (20)

= p0⟨ψ0|P |ψ0⟩+
4ND−1∑
j=1

pj

(
1

|S2N |

∫
ψj∈S2N

Tr[P |ψj⟩⟨ψj|]dψj

)
(21)

= p0⟨ψ0|P |ψ0⟩+
4ND−1∑
j=1

pj

(
Tr

[
P

1

|S2N |

∫
ψj∈S2N

|ψj⟩⟨ψj|dψj

])
. (22)

Here we have distributed the integral within the Tr operator due to its linearity and arrived at the expression of an
average N -qubit Haar state

1

|S2N |

∫
ψj∈S2N

|ψj⟩⟨ψj|dψj = I/2N . (23)

It follows that the expectation value is

E[⟨P ⟩] = p0⟨ψ0|P |ψ0⟩+
4ND−1∑
j=1

pj Tr
[
PI/2N

]
(24)

= p0⟨ψ0|P |ψ0⟩+
4ND−1∑
j=1

pj/2
N Tr[P ] (25)

= p0⟨ψ0|P |ψ0⟩. (26)

b. Variance Var[⟨P ⟩]

Similarly, we can compute the variance of ⟨P ⟩

Var[⟨P ⟩] = E[⟨P ⟩2]− E[⟨P ⟩]2 = E[⟨P ⟩2]− p20⟨ψ0|P |ψ0⟩2, (27)

where

E[⟨P ⟩2] =
4ND−1∑
i,j=0

pipjE[Tr[P |ψi⟩⟨ψi|] Tr[P |ψj⟩⟨ψj|]] (28)

=

4ND−1∑
i,j=0

pipj

(
1

|S2N |2

∫
ψi∈S2N

∫
ψj∈S2N

Tr[P |ψi⟩⟨ψi|] Tr[P |ψj⟩⟨ψj|]dψidψj

)
. (29)
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We note that here the summation of cross-terms where i ̸= j within Eq. (29) evaluates to 0. Summing the rest of the
terms where i = j, excluding the noiseless term p20⟨ψ0|P |ψ0⟩2, we get

Var[⟨P ⟩] =
4ND−1∑
j=1

p2jE[Tr[P |ψj⟩⟨ψj|]2] (30)

=

4ND−1∑
j=1

p2j

(
1

|S2N |

∫
ψj∈S2N

Tr[(P ⊗ P )|ψj⟩⟨ψj| ⊗ |ψj⟩⟨ψj|]dψj

)
(31)

=

4ND−1∑
j=1

p2j

(
Tr

[
(P ⊗ P ) 1

|S2N |

∫
ψj∈S2N

|ψj⟩⟨ψj| ⊗ |ψj⟩⟨ψj|dψj

])
(32)

=

4ND−1∑
j=1

p2j Tr

[
P ⊗ P I ⊗ I + SWAP

2Tr[(I ⊗ I + SWAP)/2]

]
(33)

=

4ND−1∑
j=1

p2j Tr

[
P ⊗ P + (P ⊗ P )SWAP

Tr[I ⊗ I + SWAP]

]
(34)

=

4ND−1∑
j=1

p2j

(
Tr

[
P ⊗ P

Tr[I ⊗ I + SWAP]

]
+Tr

[
(P ⊗ P )SWAP

Tr[I ⊗ I + SWAP]

])
(35)

=

4ND−1∑
j=1

p2j
Tr[I ⊗ I + SWAP]

Tr[(P ⊗ P )SWAP] (36)

=

4ND−1∑
j=1

p2j
Tr[I ⊗ I + SWAP]

Tr
[
P 2
]

(37)

=
2N

Tr[I ⊗ I + SWAP]

4ND−1∑
j=1

p2j (38)

=
2N

Tr[I ⊗ I] + Tr[SWAP]

4ND−1∑
j=1

p2j (39)

=
2N

22N + 2N

4ND−1∑
j=1

p2j (40)

=
1

2N + 1

4ND−1∑
j=1

p2j . (41)

For the single-qubit depolarizing error channel proposed in Eq. (13) with error probability r, the variance expression
becomes

Var[⟨P ⟩] = 1

2N + 1

4ND−1∑
j=0

p2j

− p20
 (42)

=
1

2N + 1

[(
(1− r)2 + 3(r/3)2

)NDk − (1− r)2NDk
]
. (43)

Fig. 8 illustrates the standard deviation of ⟨P ⟩, σ⟨P ⟩ :=
√

Var[⟨P⟩] as a function of depths D × k and single-qubit
depolarizing rate r, considering number of logical qubits N = 1, 10, 100. We observe that σ⟨P ⟩ remains relatively small
overall for N = 100, while it is comparatively larger for N = 1 and 10. We note that σ⟨P ⟩ is particularly large for

low-depth and high-error settings. In the extreme case of N = 1, σ⟨P ⟩ reaches a concerning high magnitude ∼ 10−2,
which is too large to be overlooked in our algorithmic error model.

Nonetheless, we opted to exclude the random fluctuation term stemming from variance in our algorithmic error
model throughout our analysis. This decision aligns with the objective of our study, which focuses on examining
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FIG. 8 Standard deviation of ⟨P ⟩ as a function of D × k and r is plotted on a log scale for N = 1, 10, 100.

the performance of devices in the early fault-tolerant regime. Specifically, we are interested in the parameter regime
characterized by r = plogical ≲ 10−2, N ≳ 100, and D × k ≳ 1000. In this regime, the standard deviation σ⟨P ⟩
remains sufficiently small, justifying our assumption to omit it from the algorithmic error model. We point out that
the performance of the RFE algorithm under the NISQ setting, where plogical > 10−2, N < 100, and D × k < 1000,
falls outside the scope of our study and merits further investigation.

2. Algorithm Performance

In this section, we detail the derivation of the performance upper bound of the RFE algorithm in the presence of

exponential decay noise of strength λ. Based on the success condition |f̂j |2 < |f̂j∗|2 for all j with |j −Θ| > 1, where
Θ = Jθ/2π, as discussed in §VA, the algorithm failure probability can be upper bounded using the union bound

Pr(fail) ≤
∑

|j−Θ|≥1

Pr(failj) (44)

≤ (J − 2)max
j

Pr(failj) (45)

≤ J max
j

Pr(failj). (46)

We will upper bound this worst-case failure probability using Chebyshev’s inequality.

In previous analyses of the RFE algorithm [1], we had analyzed the likelihood that every Fourier estimate f̂j was
within some distance of its mean fj . This approach does not capture the performance of the algorithm in the regime

of small K, as the correlation between Fourier estimates, f̂j and f̂j′ , is largely overlooked. As a result, the success
probability bound becomes too loose to capture the actual performance scaling of the algorithm.

To account for the correlation among the Fourier estimates, we will consider a change of variables,

ĉj,j∗ ≡ f̂j + f̂j∗ (47)

d̂j,j∗ ≡ f̂j − f̂j∗. (48)

The motivation for this choice is the fact that d̂j,j∗ captures correlation between f̂j and f̂j∗ and therefore will have

small variance for nearby j, j∗ when K is small compared to J . In contrast, ignoring the correlation between f̂j and

f̂j∗ and treating their variances separately, as was done in [1], leads to an overestimation of the algorithm failure
probability. We will define the expectation values of these quantities to be

cj,j′ ≡ fj + fj′ (49)

dj,j′ ≡ fj − fj′ . (50)

The sufficient condition for success can be expressed as

Re(ĉj,j∗d̂
∗
j,j∗) < 0 for all j with |j − Jθ/2π| > 1 (51)
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using the following relationship,

|f̂j |2 − |f̂j∗|2 = Re((f̂j + f̂j∗)(f̂j − f̂j∗)∗)
= Re(ĉj,j∗d̂

∗
j,j∗). (52)

This condition also holds for cj,j∗ and dj,j∗, which are the expected values of ĉj,j∗ and d̂j,j∗, respectively. It is
the statistical fluctuations from the finite sampling that can cause the condition to fail. As the number of samples

is increased, the estimates ĉj,j∗ and d̂j,j∗ will be expected to increasingly concentrate about their means. We can
quantify this concentration with the following version of the central limit theorem proven by H. Chernov [28],

Pr

(∣∣∣∣∣ 1M
M∑
i=1

q̂i − Eq̂

∣∣∣∣∣ > t

)
≤ 4 exp

(
Mt2/8Var(q̂)

)
(53)

where q̂ is any continuous random complex variable. We use the Chebyshev inequality to upper bound the likelihood
that the estimator deviates from its ideal expected value:

Pr(|ĉ− Eĉ| > χ) ≤ 4 exp
(
−Mχ2/8Var(ĉ)

)
Pr(|d̂− Ed̂| > η) ≤ 4 exp

(
−Mη2/8Var(d̂)

)
(54)

where Var(ĉ) and Var(d̂) are the single sample variances of ĉ and d̂. Thus, we have two free parameters (χ and

η) to choose in a manner such that 1) |ĉ − Eĉ| ≤ χ and |d̂ − Ed̂| ≤ η imply success (letting us upper bound
the failure probability) and 2) the number of samples does not become too high. While it does not necessarily
minimize the number of samples, we will choose the value of χ such that the upper bounds in Eq. 54 become equal:

χ = η

√
Var(ĉ)/Var(d̂).

Next, we aim to establish a sufficiently large value for η, while still ensuring that |ĉ − Eĉ| ≤ η

√
Var(ĉ)/Var(d̂)

and |d̂ − Ed̂| ≤ η imply success. This will be achieved by recasting the success condition. Note that the condition

Re(ĉj,j∗d̂
∗
j,j∗) < 0 is independent of the magnitudes of ĉj,j∗ and d̂∗j,j∗; it only depends on the relative phase angle

between these two complex numbers. Thus, an equivalent condition for algorithm success is that, for all j with

|j − Jθ/2π| > 1, the phase angle formed between complex values ĉj,j∗ and d̂j,j∗ is not within [−π/2, π/2]. For the
time being, we will ease the notation by dropping the j, j∗ subscripts.
We use this phase angle condition to establish a sufficient condition for success in terms of the allowable sizes of

deviations from the mean. The largest possible angle formed between ĉ and c is given by sin(γ) = |ĉ− c|/|c| and the

largest possible angle formed between d̂ and d is given by sin(τ) = |d̂ − d|/|d|. We also define the angle between c
and d according to |c||d| cos(α) = Re(cd∗). With these definitions, the smallest possible phase angle formed between

ĉ and d̂ is α− γ − τ , hence, the condition for success becomes

π/2 < α− γ − τ. (55)

We use the bounds of x ≤ arcsinx ≤ πx/2 for 0 ≤ x ≤ 1 to establish a sufficient condition for success that is

amenable to using the Chebyshev inequality. First, we have that γ + τ ≤ π
2 (|ĉ − c|/|c| + |d̂ − d|/|d|). Next we have

that cos(α) = − sin(α− π/2), and so arcsin(−Re(cd∗)/|c||d|) = α − π/2. Using the lower bound on arcsin, we then
have −Re(cd∗)/|c||d| ≤ α− π/2. From the chain of inequalities

−Re(cd∗)/|c||d| < α− π/2 < γ + τ <
π

2
(|ĉ− c|/|c|+ |d̂− d|/|d|), (56)

we can establish the following implication

α− π/2 < γ + τ

⇒

−Re(cd∗)/|c||d| < π

2
(|ĉ− c|/|c|+ |d̂− d|/|d|) (57)

The contrapositive of this statement gives our sufficient condition for algorithm success

−Re(cd∗) > π

2
(|c||d̂− d|+ |d||ĉ− c|)

⇒
π/2 < α− γ − τ. (58)
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We can then set the maximal allowable value for η according to Eq. (58). Defining ρ =

√
Var(ĉ)/Var(d̂), this is

η = − 2

π

Re(cd∗)

|c|+ |d|ρ

=
2

π

|f̂j∗|2 − |f̂j |2

|c|+ |d|ρ
. (59)

Putting this all together, the probability of failure is upper bounded by

Pr(fail) ≤ J max
j

Pr(failj) (60)

≤ J max
j

Pr(|ĉ− c| > χ or |d̂− d| > η) (61)

≤ J max
j

(Pr(|ĉ− c| > χ) + Pr(|d̂− d| > η)) (62)

≤ 8J exp
(
−Mη2j′,j∗/8Var(d̂j′,j∗)

)
(63)

(64)

where we’ve reintroduced the indices j′, j∗ for clarity and are using j′ to indicate the index that realizes the maxi-

mization. Let W (K,J, λ) be a parameterized upper bound on the quantity Var(d̂j′,j∗)/η
2
j′,j∗ that is independent of

θ, j∗, and j′. To ensure that P (fail) ≤ δ, we can choose M to be a value such that

8J exp
(
−Mη2j′,j∗/8Var(d̂j′,j∗)

)
≤ δ (65)

(66)

We can then solve for such a value of M as

−Mη2j′,j∗/8Var(d̂j′,j∗) ≤ log (δ/8J) (67)

M ≥ 8Var(d̂j′,j∗)

η2j′,j∗
log(8J/δ) (68)

To achieve a high probability of success, it is also sufficient to set M to be greater than a value that is larger than
the right-hand side above. Let W be such that

8W (K,J, λ) log(8J/δ) ≥ 8Var(d̂j′,j∗)

η2j′,j∗
log(8J/δ) (69)

Then, setting

M ≥ 8W (K,J, λ) log(8J/δ) (70)

is sufficient to ensure success with high probability. Here K and J are set as functions of λ and ϵ, given by

J ← 2π/ϵ (71)

K ← max{⌊((1/λ)−1 + (2π/ϵ)−1)−1⌋, 2}, (72)

where we see that K is a harmonic average of J and 1/λ and K ≤ J . This will make the number of measurements
M an implicit function of ϵ and λ.

We now establish the upper bound W ≥ Var(d̂)
η2 . From Eq. (59), we can upper bound the square root of the quantity√

Var(d̂)
η2 √

Var(d̂)

η
=
π

2

σd̂|c|+ σĉ|d|
|fj∗|2 − |fj |2

(73)

≤ 2π
σd̂ + |d|

|fj∗|2 − |fj |2
, (74)
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where in the second line we have used the fact that both σĉ =
√
Var(ĉ) and |c| are upper bounded by 4. This follows

from the fact that for a single sample estimate, ĉ has magnitude at most 4 as it is the sum of two quantities that have

magnitude at most 2. Since Var(d̂) = E(|d̂|2)− d2 is positive, we have that E(|d̂|2) ≥ Var(d̂) and E(|d̂|2) ≥ |d|2. This
lets us further upper bound

√
Var(d̂)
η2 as √

Var(d̂)

η
≤ 4π

√
E(|d̂|2)

|fj∗|2 − |fj |2
. (75)

Using ω = e−i2π/J , E(|d̂|2) is computed to be

E(|d̂|2) = 4E(
∣∣e−iϕz(ωjk − ωj∗k)∣∣2) (76)

= 8(1− ERe(ωk(j∗−j))) (77)

= 8− 4

K

(
1− ωK(j∗−j)

1− ωj∗−j
+

1− ω−K(j∗−j)

1− ω−j∗+j

)
(78)

= 8− 8 cos

(
π(K − 1)

j∗ − j
J

)
sin
(
πK j∗−j

J

)
K sin

(
π j∗−jJ

) . (79)

Defining x = π(j∗ − j)/J , we establish a function upper bounding the quantity above

E(|d̂|2) = 8

(
1− (cos(Kx) cos(x) + sin(Kx) sin(x))

sin(Kx)

K sin(x)

)
(80)

= 8

(
1− sin(2Kx)

2K tan(x)
− sin2(Kx)/K

)
(81)

≤ 8

(
1− sin(2Kx)

2K tan(x)

)
(82)

≤ 8

(
1− sin(2Kx)

2K tan(x)

)
(83)

≤ 32

3

(
1− exp

(
−4(Kx)2/7

))
, (84)

where the last inequality is established by using numerical software and exploiting the fact that K ≥ 2. Observe
that this function is monotonically increasing in x. We rewrite x = (θ − 2πj/J)/2 − (θ − 2πj∗/J)/2. Using the
fact that |θ − 2πj∗/J | ≤ π/J and that the above function is monotonic in x, we obtain an upper bound by setting
|x| = π/J + |θ − 2πj/J |/2,

E(|d̂|2) ≤ 32

3

(
1− exp

(
−4K2

7
(π/J + |θ − 2πj/J |/2)2

))
≡ Q(K,J ; j). (85)

Next we lower bound the denominator of Eq. (75). From Eq. (18), we calculate

|fj |2 =
e−(K−1)λ

K2

(
cosh(Kλ)− cos(K(θ − 2πj/J))

cosh(λ)− cos(θ − 2πj/J)

)
. (86)

Defining y∗ = θ − 2πj ∗ /J , we have that |y∗| ≤ ϵ/2 = π/J . Note that the above function, for j = j∗, is symmetric
about y∗ = 0 and thus depends only on |y∗|. Using the fact that K ≤ J , on the range 0 ≤ |y∗| ≤ π/J , the above
function is monotonically decreasing (as observed numerically). Thus, it achieves its minimum at |y∗| = π/J . From
this we lower bound |fj∗|2 as

|fj∗|2 ≥
e−(K−1)λ

K2

(
cosh(Kλ)− cos(πK/J)

cosh(λ)− cos(π/J)

)
≡ R(K,J, λ). (87)

Lastly, we upper bound the square magnitude of the Fourier coefficient of the non-adjacent frequencies, |fj |2, where
|Jθ/2π − j| ≥ 1. To simplify the analysis, we define

m(x) :=
e−(K−1)λ

K2

(
cosh(Kλ)− cos(x)

cosh(λ)− cos(x/K)

)
, (88)
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such that |fj |2 = m(K(θ − 2πj/J)). Consider the renormalized version of this function m(x)/m(0), such that it
evaluates to 1 at x = 0. For λ ≤ 1/K, which is ensured by our choice of K (72), this renormalized function is
maximized when λ = 1/K. This handles the λ parameter for the purpose of establishing a functional upper bound,

m(x)

m(0)
=

cosh(λ)− 1

cosh(Kλ)− 1

(
cosh(Kλ)− cos(x)

cosh(λ)− cos(x/K)

)
≤ cosh(1/K)− 1

cosh(1)− 1

(
cosh(1)− cos(x)

cosh(1/K)− cos(x/K)

)
. (89)

It can then be numerically established that for all integer K ≥ 2, we have

cosh(1/K)− 1

cosh(1)− 1

(
cosh(1)− cos(x)

cosh(1/K)− cos(x/K)

)
≤ h(x) ≡ 0.87 cosK

2/2(x/2K) + 0.13. (90)

The key feature of this function is that it is monotonically decreasing on the interval [0, πK]. Therefore, we have the
desired functional upper bound on |fj |2 as

|fj |2 ≤ m(0)h(K(θ − 2πj/J)) = 0.87
e−(K−1)λ

K2

(
cosh(Kλ)− 1

cosh(λ)− 1

)
(cosK

2/2((θ − 2πj/J)/2) + 0.15)

≡ S(K,J, λ; j), (91)

and this function S(K,J, λ; j) decreases monotonically away from j = Jθ/2π on the interval −J/2 ≤ j−Jθ/2π ≤ J/2.
Putting the previous bounds together, we have that√

Var(d̂)

η
≤ 4π

√
E(|d̂|2)

|fj∗|2 − |fj |2
≤ 4π

√
Q(K,J ; j)

R(K,J, λ)− S(K,J, λ; j)
, (92)

where Q, R, and S are defined in Eqs. (85), (87), and (91), respectively. This overall function is monotonically
decreasing in |j−Jθ/2π|, and thus setting this value to its smallest allowed value of |j−Jθ/2π| = 1 (the non-adjacent
condition) leads to an upper bound that is independent of j∗ and j,√

Var(d̂)

η
≤ 4π

√
Q(K,J ; Jθ/2π + 1)

R(K,J, λ)− S(K,J, λ; Jθ/2π + 1)
. (93)

From this we are able to establish the final bound on the sufficient number of measurements to ensure an accurate
estimate with high probability,

M ≥ 128π2 log(8J/δ)
Q(K,J ; Jθ/2π + 1)

(R(K,J, λ)− S(K,J, λ; Jθ/2π + 1))2
, (94)

where Q, R, and S are defined in Eqs. (85), (87), and (91), respectively.

3. Comparison to cost of standard quantum phase estimation

In this section, we analyze the cost of the standard quantum phase estimation (QPE) algorithm as described in
[29]. This allows us to compare the fault-tolerant overhead associated with the traditional approach to the frugal
approach that we have taken using the RFE algorithm.

Based on Ref. [29], the standard QPE algorithm can achieve an ϵ-accurate estimation with probability greater
than 1 − δ′ by using n = ⌈log2( 1ϵ )⌉ + ⌈log2(

1
2δ +

1
2 )⌉ ancillary qubits and performing 2n+1 − 1 c-U operations in the

circuit. We note that here we have ignored the cost of the quantum Fourier transform operations, as in most cases it
is negligible compared to the rest of the circuit. While this analysis assumes that the circuit is implemented perfectly,
in practice, there will be some implementation failure probability.

The standard approach for analyzing the failure rate of quantum algorithms is to upper bound the failure rate as

δ ≤ δalg + δimp. (95)

Here, the implementation failure probability δimp accounts for any uncorrected errors within the fault-tolerant pro-
tocols, contributing to the overall algorithm failure probability δ alongside the standard algorithm failure probability
δalg. This assumption holds reasonably well in terms of asymptotic scaling, with the fault-tolerant overhead exhibiting
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a logarithmic dependency on the inverse failure rate. However, in the context of early fault-tolerant systems where
resources are scarce, a more economical allocation of resources becomes advantageous.

Given a target total failure rate of δ, the allocation of the error budget between the algorithm failure and the
implementation failure becomes a crucial decision. Though not optimal, a nearly optimal approach is to evenly
distribute an error budget of δ/2 to both failure modes. Consequently, this establishes a lower bound on the required
number of ancilla qubits,

n ≥ ⌈log2(
1

ϵ
)⌉+ ⌈log2(

1

δ
+

1

2
)⌉. (96)

Similarly, the number of c-U operations in the circuit satisfies the lower bound

#(c− U) ≥ 1

ϵ

(
1

δ
+

1

2

)
− 1. (97)

We will only slightly over-count resources by dropping the −1 above. In order to ensure that δimp ≤ δ/2, each c-U
component must fail with a probability no greater than

δc−U ≤
δ

2

1

2n+1 − 1
≤ δ

2
2−(n+1) =

ϵδ2

1 + δ
. (98)

We note that here the implementation error solely arises from QEC failure. As a reminder, the logical error rate
for a surface code is assumed by the model plogical = Ae−Bd (as discussed in §IVA), where A and B are constants
from empirical observation of the surface code scaling and d is the distance of the surface code. Assuming that each
logical c-U operation includes ∼ ND physical operations, where N is the number of qubits and D the circuit depth,
the failure probability of one logical c-U is then

δc−U ≤ NDplogical. (99)

To ensure that the c-U logical failure rate in Eq. (99) is bounded by the maximal acceptable failure probability as
required by the algorithm from Eq. (98), we can therefore bound the logical error rate plogical

plogical ≤
ϵδ2

ND(1 + δ)
, (100)

whereby we can then bound the minimal distance require to reach the desired success probability δ for the traditional
QPE algorithm

d ≥ 1

B
ln

(
AND(1 + δ)

ϵδ2

)
. (101)

In the case of a high physical error rate with A = 0.5 and B = 1.6, achieving a success probability of δ = 10−2

and precision of ϵ = 10−3 for a QPE problem instance of N = 100 and D = 1000 requires a minimal distance of
18 with the traditional algorithm. This corresponds to approximately 64,800 physical qubits, currently surpasses the
capabilities of both NISQ and EFTQC devices.

To illustrate this, in Fig. 7, we compare the runtime, measured in the number of error correction cycles, between
QPE and RFE as a function of the required physical qubits 2Nd2. It is important to note that while RFE has a higher
runtime upper bound, it offers a tradeoff between runtime and the required distance/number of physical qubits in the
EFTQC regime (as indicated by the shaded green region). This tradeoff becomes particularly valuable for upcoming
devices that can accommodate a few thousand qubits and support error-correcting codes of moderate distances.

In practice, the actual runtime of RFE is expected to be significantly lower than the calculated upper bound.
Additionally, we note that the runtime cost can be effectively reduced through parallelization across multiple devices
of smaller sizes, leveraging the statistical nature of the RFE algorithm.
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