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Abstract The discovery of small molecules with therapeutic potential is a long-standing challenge
in chemistry and biology. Researchers have increasingly leveraged novel computational techniques
to streamline the drug development process to increase hit rates and reduce the costs associated
with bringing a drug to market. To this end, we introduce a quantum-classical generative model
that seamlessly integrates the computational power of quantum algorithms trained on a 16-qubit
IBM quantum computer with the established reliability of classical methods for designing small
molecules. Our hybrid generative model was applied to designing new KRAS inhibitors, a cru-
cial target in cancer therapy. We synthesized 15 promising molecules during our investigation and
subjected them to experimental testing to assess their ability to engage with the target. Notably,
among these candidates, two molecules, ISM061-018-2 and ISM061-22, each featuring unique scaf-
folds, stood out by demonstrating effective engagement with KRAS. ISM061-018-2 was identified
as a broad-spectrum KRAS inhibitor, exhibiting a binding affinity to KRAS-G12D at 1.4µM . Con-
currently, ISM061-22 exhibited specific mutant selectivity, displaying heightened activity against
KRAS G12R and Q61H mutants. To our knowledge, this work shows for the first time the use
of a quantum-generative model to yield experimentally confirmed biological hits, showcasing the
practical potential of quantum-assisted drug discovery to produce viable therapeutics. Importantly,
comparative analysis with existing classical generative models indicates that integrating quantum
computing enhances distribution learning from established datasets, suggesting a potential advan-
tage for quantum generative models over their classical counterparts. Moreover, our findings reveal
that the efficacy of distribution learning correlates with the number of qubits utilized, underlining
the scalability potential of quantum computing resources. Overall, we anticipate our results to be a
stepping stone towards developing more advanced quantum generative models in drug discovery.

I. INTRODUCTION

Drug discovery is a multifaceted process involving
various stages, including identifying, developing, and
rigorously testing novel molecules intended to combat
a spectrum of diseases [1]. A drug discovery campaign

∗ Correspondence to: aspuru@utoronto.ca
† Correspondence to: alex@insilicomedicine.com

typically spans a decade to fifteen years or more and
commands a financial commitment that often exceeds
$2.5 billion [2] during clinical trials. Significantly, these
substantial investments do not guarantee success; when
a drug development cycle fails, it represents a financial
setback with the potential loss of the entire capital
investment [3]. Consequently, the pharmaceutical
industry continually seeks innovative and cutting-edge
technologies to integrate into their workflows, aiming to
enhance their prospects for successful market entry.
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FIG. 1. Schematic Representation of the Hybrid Quantum-Classical Framework for KRAS Ligand Development.
The initial phase concentrates on compiling a dataset for model training. A curated set of 650 experimentally verified inhibitors
targeting the KRAS protein is extracted from the literature. By applying the STONED-SELFIES algorithm, analogs for each
identified compound are derived, yielding an expanded collection of around 850,000 compounds. This dataset is further
enhanced by the addition of the top 250,000 candidates, identified via a virtual screening process using the REAL ligand
library against the KRAS protein, culminating in a dataset of over 1 million molecules for training our generative model. Upon
completing the training of our model, new molecules targeting KRAS are created employing both a classical LSTM network and
a Quantum Circuit Born Machine (QCBM) as the underlying generative frameworks. The LSTM network processes sequential
data encapsulating the chemical structures of ligands, while QCBM, trained based on the quality of LSTM-generated samples,
creates complex, high-dimensional probability distributions. The combined workflow utilizes Chemistry42 as a reward function
to incentivize the creation of structurally diverse and synthesizable molecules.
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The drug discovery journey commences with identifying
a critical target, usually a protein or enzyme integral
to a disease’s pathophysiology [4]. Following this step,
researchers employ many techniques, notably virtual
screening [5–7], to design and rigorously assess poten-
tial drug candidates creatively. These candidates are
meticulously evaluated for their proficiency in engaging
with and modulating the target, propelling the pursuit
of therapeutic innovations [8]. Concurrently, generative
modelling is emerging as a transformative technology in
molecule design [9–12]. Generative models utilize ma-
chine learning techniques to comprehend the underlying
distribution of atoms and bonds in a specified dataset.
Subsequently, these models are employed to construct
molecules with predefined properties, a process known
as inverse molecular design [13–15]. A promising aspect
of these models is their ability to navigate the vast
chemical space, proposing interesting molecules within
the challenging realm of 1060 drug-like molecules [16].

A transition from the intricate landscape of traditional
drug discovery to the realm of advanced computa-
tional techniques underscores the industry’s adaptation
to innovative methodologies. Within this evolution,
quantum machine learning has garnered attention, par-
ticularly in enhancing generative models. Hibat-Allah
et al. [17] introduced a framework that juxtaposes
the performance of quantum and classical generative
models, focusing on the practical quantum advantage
and the potential superiority of Quantum Circuit Born
Machines (QCBM) over their conventional counterparts.
Their research highlights the generalization capabilities
of QCBMs, notably in generating novel, valid sam-
ples that extend beyond the training dataset. These
models adhere to the target distribution and address
training challenges such as barren plateaus, effectively
integrating tensor networks alongside QCBMs [18, 19].
Despite the promising strides, quantum information
processing confronts inherent limitations, notably in
data loading and trainability within quantum circuits.
These challenges have prompted a shift towards hy-
brid algorithms, amalgamating the strengths of both
quantum and classical machine learning paradigms. A
notable contribution in this regard is from Manuel et
al. [20], who demonstrated the enhanced exploration
of target space facilitated by integrating a multi-basis
QCBM into a classical framework, termed the Quantum
Circuit Associative Adversarial Network (QC-AAN).
This hybrid model not only augments model training
beyond the capabilities of classical hardware but also
transcends the constraints imposed by the size of the
quantum prior, signifying a significant leap in the field
of quantum-enhanced machine learning. Furthermore,
Zeng et al. [21] introduced a quantum-classical hybrid
framework (conditional QCBM and a classical model) for
image generation tasks, utilizing quantum circuits that
encode conditional information via additional qubits.

Here, we propose a novel quantum-classical generative
model specifically designed to overcome qubit limitations
while combining the best of classical and quantum com-
putational methods. Our hybrid model is engineered to
generate realistic ligands to design compounds for tar-
geted proteins. A prime focus of our endeavour is the
KRAS protein, a target notorious for its intricate com-
plexity and historical resistance in drug discovery ven-
tures [22–24]. The comprehensive workflow of our ap-
proach, spanning from data generation to experimen-
tal validation, is illustrated in Figure 1. Notably, our
model capitalizes on established classical computational
pipelines. We employ the STONED-SELFIES algorithm
[25] for its proficiency in exploring and interpolating the
vast chemical space. Additionally, we incorporate Chem-
istry42 [26] as an external reward signal, a strategic
move to enhance the realistic design of molecules. This
integration ensures that our generated ligands exhibit
novel and drug-like properties and are highly relevant
for the targeted protein. To validate the predictions of
our model, we synthesized a series of 15 candidate com-
pounds. These engineered compounds underwent exten-
sive experimental evaluation to ascertain their efficacy
in targeting KRAS. One candidate, distinguished by a
novel chemotype, manifested as a pan-KRAS inhibitor.
We believe that this study lays foundational groundwork
for the integration of quantum algorithms in the field of
drug discovery. This work underscores the potential and
viability of quantum-enhanced methodologies in drug dis-
covery by achieving what we understand to be the first
experimental hit attributed to a quantum algorithm.

II. RESULTS AND DISCUSSION

Our methodology encompasses a comprehensive work-
flow, extending from data preparation to experimental
validation, as delineated in Figure 1. This workflow is
structured into three pivotal stages:

(1) Generation of Training Data: We initiate the
process by constructing a robust dataset for training
our generative model to target the KRAS protein.
The foundation of this dataset is approximately 650
experimentally confirmed KRAS inhibitors, compiled
through an extensive literature review [28–31]. Ac-
knowledging the necessity of a more expansive dataset
to develop a model for ligand design effectively, we
adopted a two-pronged approach: virtual screening
and local chemical space exploration. In the virtual
screening phase, we employed Virtual Flow 2.0 [6] to
screen 100 million molecules, utilizing Enamine’s REAL
library [32] in conjunction with molecular docking
techniques. The top 250k compounds from this screen,
exhibiting the lowest docking scores, were subsequently
integrated into our dataset. Complementing this, the
local chemical space exploration was conducted using the
STONED-SELFIES algorithm [33], which was applied
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FIG. 2. Quantum-Enhanced Generative Model for Drug Discovery Applications. (A) Hybrid model combining a
Quantum Circuit Born Machine (QCBM) with Long Short-Term Memory (LSTM). This model iteratively trains using prior
samples from quantum hardware. (B) Integration method of prior samples into the LSTM architecture. Molecular information
(in SELFIES encoding) and quantum data are merged by addition or concatenation. The resultant samples, X ′(t), are then
input to the LSTM cell. (C) Quantum prior component described as a QCBM, generating samples from quantum hardware
each training epoch and trains with a reward value, P (x) = Softmax(R(x)), calculated using Chemistry42 or a local filter.
(D) Process of experimental sample selection: 1 million compounds are sampled from each model—classical samples (via
vanilla LSTM), quantum samples (QCBM on quantum hardware), and simulated samples (quantum simulation on classical
hardware). These samples undergo evaluation by Chemistry42, filtering out compounds unsuitable for pharmacological purposes
and ranking the remaining compounds by their docking score (PLI score). Subsequently, 15 novel compounds were selected for
synthesis.

to the 650 experimentally derived hits. This algorithm
distinctively introduces random point mutations into
the SELFIES representations [34–36] of the molecules,
thereby generating novel compounds that maintain a
structural resemblance to the starting point. The result-

ing derivatives were filtered based on synthesizability
(see Methods A 1 a and A1b for details), culminating in
the addition of 850 thousand molecules to our training
set.
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FIG. 3. Comparative Benchmarking of Quantum and Classical Ligand Design Methods. (A) Evaluation of the
proposed model against classical counterparts using the Tartarus benchmark suite [27] for ligand design across three protein
targets: 1SYH, 6Y2F, 4LDE, with models trained on a subset of the DTP Open Compound Collection. Displayed metrics show
both the average and the variability (mean ± standard deviation) of the optimal objective values for the targets, compiled
from five individual experiments. ’Dataset’ refers to the molecule with the highest performance in the training dataset, whereas
’Native Docking’ indicates the initial ligands within their crystallographic structures. The notation ∆EX signifies the docking
score relative to the protein target designated by X. SR stands for the success ratio, indicating the percentage of molecules
that meet the predefined structural benchmarks. (B) Comparative analysis of our hybrid approaches with varied priors.
The performance of the Quantum Circuit Born Machine (QCBM) was assessed using both a quantum simulator (Sim) and a
hardware backend (HW), and contrasted with a Multi-bases QCBM (MQCBM) operating solely on a quantum simulator (SIM),
as well as an LSTM model devoid of quantum priors (representing a fully classical architecture). We calculated the number
of generated molecules that met a series of synthesizability and stability criteria as stipulated by the Tartarus benchmarking
platform (referred to as Local Filters) and by Chemistry42 (referred to as Chemistry42 Filters). (C) Comparative analysis of
prior sampling techniques in producing high-docking molecules, as assessed by QuickVina2 and Chemistry42. This comparison
delineates the Success Rate (SR %) of molecules meeting Tartarus filter criteria, the uniqueness of generated ligands (Unique
Fraction, UF %), and the Structural Diversity Fraction (DF %) of the generated ligands, across various methods. the success
rates (SR% Ch42) of molecules meeting Chemistry42’s filter criteria, the top reward values (R Ch42) assigned to molecules by
Chemistry42, the synthetic accessibility score (SA Ch42) of drug-like molecules, and the highest PLI Ch42 scores found in the
generation. The PLI score is measured in kcal/mol, with more negative values indicating better scores. (D) Success rate of
generating molecules that meet Tartarus’s filter criteria as a function of the number of qubits used in modeling priors for the
QCBM.
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(2) Generation of New Molecules: Our approach
is structured around the integration of three primary
components: a) the Quantum Circuit Born Machine
(QCBM), b) the classical Long Short Term Memory
(LSTM) model, and c) Chemistry42 for AI-driven vali-
dation, as shown in Figure 2. The QCBM generator [17]
employs a 16-qubit IBM quantum processor, utilizing
quantum circuits to model complex data distributions.
The integration method of quantum priors into the
LSTM architecture, as shown in Figure 2B, involves
merging molecular information encoded in SELFIES
and quantum data by addition or concatenation to form
samples, X ′(t), which are then input into the LSTM cell.
The quantum component, depicted in Figure 2C, is a
QCBM that generates samples from quantum hardware
each training epoch and is trained with a reward value,
P (x) = Softmax(R(x)), calculated using Chemistry42
or a local filter. This cyclical sampling, training, and
validation process forms a loop aimed at continually im-
proving the generated molecular structures for targeting
KRAS.

(3) Experimental validation: The process of selecting
experimental sample candidates is illustrated in Figure
2D. After training our model, we sampled 1 million
compounds from each prior model listed in Figure 2D.
These samples underwent evaluation by Chemistry42,
filtering out unsuitable compounds for pharmacological
purposes and ranking the remaining compounds by
their docking score (PLI score). Subsequently, 15 novel
compounds were selected for synthesis and underwent
Surface Plasmon Resonance (SPR) and cell-based assay
experiments.

Before initiating our campaign to design new KRAS in-
hibitors, we sought to compare our hybrid quantum-
classical approach with established classical algorithms.
Two principal questions guided our evaluation: First,
does integrating quantum methodologies contribute to
generating high-quality molecules featuring potentially
strong target-specific docking scores? To address this,
we evaluated our approach against the Tartarus bench-
marking suite [27], specifically designed for drug discov-
ery tasks on three distinct protein targets. Second, we
examined the influence of the quantum prior, replacing
it with a classical counterpart and increasing the number
of qubits in our quantum model to determine whether
there is a proportional relationship between the number
of qubits and the quality of the generated molecules.

A. Computational Benchmarks - Classical vs
Quantum Models

1. Tartarus Benchmark

We employed the Tartarus platform [27] to benchmark
our proposed QCBM-LSTM methodology against an

array of classical state-of-the-art models, including
REINVENT [37], SMILES-VAE [38], SELFIES-
VAE [36], MoFlow [39], SMILES-LSTM-HC [40, 41],
SELFIES-LSTM-HC, GB-GA [42], and JANUS [43].
The study focused on three protein targets selected from
the Tartarus dataset: 1SYH, an ionotropic glutamate
receptor associated with neurological and psychiatric
disorders such as Alzheimer’s, Parkinson’s, and epilepsy
[44]; 6Y2F, the main protease of the SARS-CoV-2
virus, crucial for its RNA translation [45]; and 4LDE,
the β2-adrenoceptor GPCR, a cell membrane-spanning
receptor that binds to adrenaline, a hormone implicated
in muscle relaxation and bronchodilation [46]. For
each target, we had a dual objective: to generate novel
molecules that exhibit strong binding affinity to the
specified proteins, as determined by active sites assigned
by Tartarus, and to minimize the docking score using
QuickVina2 [47]. Additionally, these molecules were
required to pass a comprehensive set of filters designed to
eliminate reactive, unsynthesizable, or unstable groups,
thereby streamlining the drug discovery process. The
top-performing molecules, post-filtering, were subject
to a refined re-scoring using a more precise scoring
function provided by SMINA [48], at an increased level
of exhaustiveness.

We conducted experiments utilizing the QCBM with 16
qubits as a quantum prior and the LSTM as a classical
model. The local filter from the Tartarus paper served
as the reward function to train the QCBM. As recom-
mended by Tartarus, our models were trained on a subset
of 150,000 molecules from the Developmental Therapeu-
tics Program (DTP) Open Compound Collection [49, 50],
referred to as DATASET in Figure 3, Table (A). Notably,
all 150,000 structures underwent a rigorous screening pro-
cess using structural filters to eliminate reactive, unsyn-
thesizable, or unstable groups. As such, generative mod-
els adept at capturing the distribution of the provided
molecule set would exhibit a correspondingly high success
rate in generating novel molecules without structural vi-
olations. Our observations indicate that only a few gen-
erative models demonstrate a high success rate. How-
ever, QCBM-LSTM model is very strong in producing a
substantial number of high-quality samples that success-
fully meet the filter criteria, as evidenced by the elevated
success rate (SR) depicted in Figure 3, Table (A). Con-
sequently, we believe that the incorporation of a quan-
tum prior leads to improved distribution matching. We
further benchmark the influence of a classical/quantum
prior in the subsequent section. Moreover, our analysis
reveals that for the 4LDE target, our model generates
the highest-scoring molecules relative to other generative
models. While the docking scores for the remaining two
targets are not as high as those produced by classical
algorithms, we speculate that incorporating a docking-
score-based reward, in conjunction with the filter success
rate, could potentially improve our results.
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2. Benchmarking of Prior distributions

To evaluate the impact of prior selection on the quality
of the molecules generated by our model, we trained
four distinct model variants, each incorporating different
priors (refer to Figure 3(B)). Specifically, we examined
a Quantum Circuit Born Machine (QCBM) prior and
implemented it on both a quantum simulator (Sim)
and a hardware backend (HW), in contrast with a
Multi-bases QCBM (MQCBM) operating exclusively on
a quantum simulator (Sim), and a classical LSTM model
devoid of quantum priors. These models were tasked
with designing KRAS inhibitors, utilizing a meticu-
lously curated dataset of over one million molecules
(see Figure 1). Figure 3(B) showcases the optimal
results obtained following a comprehensive optimization
of the corresponding architectures using Optuna [51]
(detailed in Methods A 3). We assessed the quality of
the generated molecules employing two distinct sets
of criteria: one derived from Tartarus [27], termed
the ”Local Filter,” and a more stringent set provided
by Chemistry42, termed the ”Chemistry42 Filter.” In
both assessments, we observed that incorporating a
quantum prior enhances the success rate, as gauged
by the proportion of molecules satisfying the criteria
set by the two filters. Furthermore, utilizing the top
model from each prior category, we sampled 5,000
molecules that successfully met the filter criteria and
examined their respective docking scores (as presented
in Figure 3, Table (C)). Intriguingly, these molecules
displayed comparably high docking scores as determined
by QuickVina2 (denoted as QV 2.0 in the Table) and
the protein-ligand interaction score (PLI), as evaluated
by Chemistry42 (noted as PLI Ch42 in the Table).
Additionally, the synthesized molecules demonstrated
consistent metrics across various parameters, including
Diversity Fraction (DF%), Uniqueness Fraction (UF%),
Chemistry42 Reward (CH42 R), and the Chemistry42
Synthetic Accessibility Score (Chemistry42 SA) [26].

Encouraged by our observation that quantum priors en-
hance molecule quality, we further investigated the in-
fluence of the number of qubits used in modelling pri-
ors on the quality of generated molecules, as shown in
Figure 3(D). Specifically, we analyzed the percentage of
5,000 uniquely generated random molecules that satisfied
a series of local filters. Interestingly, our findings reveal
that the success rate correlates roughly linearly with the
number of qubits employed in modelling the prior, in-
dicating a direct relationship between the complexity of
the quantum model and the effectiveness in generating
high-quality molecules. This trend underscores the po-
tential of increasing qubit numbers in quantum models
to improve molecular design outcomes systematically.

B. KRAS Inhibitor Design Campaign

A critical aspect of our work involved validating the most
promising compounds identified by our hybrid quantum-
classical model, specifically targeting KRAS proteins.
This validation process is crucial for substantiating our
computational predictions and bridging the gap between
theoretical models and their practical, real-world applica-
tions. Through the testing of these selected compounds
in a campaign aimed at KRAS proteins, we aim to show-
case the potential practicality of our proposed generative
model, thereby emphasizing the real-world relevance of
our findings in the field of drug discovery.

1. Chemistry42 Post-Screening and Selection of Promising
Candidate Structures for Synthesis

Our study employed the Chemistry42 platform’s
structure-based drug design (SBDD) screening workflow
to evaluate the generated structures and select promis-
ing ligand structures for KRAS inhibition. This compre-
hensive workflow includes a series of filters and scoring
modules designed to efficiently identify structures with
favourable drug-likeness, synthetic accessibility, and tar-
get interactions, as detailed in several steps (see Fig-
ure 2D).
The initial phase of screening involved the application of
various 2D and 3D filters:

• 2D structural filters evaluating simple structural
and compositional parameters, including hydrogen
bond donors, oxygen atoms, aromatic atom frac-
tion, and rotatable bonds.

• 2D property filters assessing estimated compound
properties like molecular weight, lipophilicity, topo-
logical polar surface area, and molecular flexibility.

• Medicinal chemistry filters identifying undesirable
or problematic structural fragments.

• A synthetic accessibility filter based on the
Retrosynthesis-Related (ReRSA) model [52].

• 3D pharmacophore hypothesis derived from the X-
ray structure of the complexed inhibitor molecule
(PDB: 7EW9) [22], indicating common structural
features of known KRAS inhibitors (Figure 6).

• Pocket-ligand interaction (PLI) score, based on
molecular docking, to assess binding features of
KRAS inhibitors (Figure 6).

• Calculation of an integrated reward value based on
the weighted scores.

For the final selection of candidate structures for synthe-
sis, we imposed more stringent criteria to increase the
likelihood of identifying compounds with the desired bi-
ological activity. These criteria, more restrictive than
those used during the screening evaluation, included:
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FIG. 4. Pharmacological Characterization of Compound ISM061-018-2 Through Surface Plasmon Resonance
and Cellular Activity Assays. (A) Chemical structure of ISM061-018-2. (B) Surface Plasmon Resonance (SPR) sensorgram
illustrating the binding kinetics of ISM061-018-2 with various KRAS proteins. (C) Results of Cell-Titer-Glo viability assays
illustrating the impact of the compound on cellular proliferation across a concentration range from 123 nM to 30 µM. Reported
values represent the mean of three technical replicates, with standard deviation (S.D.) indicated. (D, Table) A compendium
of IC50 values derived from MaMTH-DS dose-response assays, conducted in biological triplicate, evaluating a range of RAS
protein baits interactions with the RAF1 prey partner. Investigated RAS members include the wild-type forms of KRAS,
HRAS, and NRAS, alongside five oncogenic KRAS mutants of clinical significance. The interaction between EGFR and the
SHCI adapter was additionally examined as an off-target control. We provide 95% confidence intervals and R-squared values
to verify the accuracy of the curve fitting. (D,E): Dose-response curves from MaMTH-DS assays graphing the modulation of
activity of various KRAS proteins, NRAS, HRAS, and EGFR, in response to increasing concentrations of ISM061-018-2 (from
4 nM to 30 µM), plotted on a logarithmic scale. The curves displayed represent one set from three biological replicates. Each
point denotes the mean of three to four technical replicates, with S.D. provided. Curve fitting was executed in GraphPad Prism
as delineated in the Methods section. These profiles underscore the compound’s differential potency against distinct targets,
shedding light on its pharmacological spectrum.
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• Successful passage through all Chemistry42 filters.

• An integrated reward value greater than 0.7.

• A Protein-Ligand Interaction (PLI) score less than
-8 kcal/mol.

• A pharmacophore match score exceeding 0.7.

• A Synthetic Accessibility (ReRSA) score below 5.

At the stage of final selection and determination of struc-
tures for subsequent experimental verification, the result-
ing sets of molecules at the last step were first clustered
by chemical similarity, and 15–20 clusters were deter-
mined for each generation. Then, within each cluster,
a ranking was carried out based on the ReRSA estimate
and the Chemistry42 Protein-Ligand Interaction (PLI)
score. Medical chemistry experts and 10 structures ana-
lyzed the resulting sets of 100-150 molecules, which were
selected based primarily on chemical novelty, structural
complexity and potentially undesirable chemical func-
tionality.

2. Experimental Evaluation of Generated Compounds

From the pool of identified structures, we synthesized
and characterized 15 compounds. Detailed methodolo-
gies of this process are elaborated in the Supplementary
Materials1 (Section S1). We showcased the molecu-
lar structures of the two most promising compounds
(named ISM061-018-2 and ISM061-22) in Figures 4(A)
and 5(A). Each synthesized compound underwent a
rigorous two-phase evaluation: their binding affinities
were determined using Surface Plasmon Resonance
(SPR), and their biological efficacies were gauged
through cell-based assays. Notably, the compound
ISM061-018-2, engineered through our hybrid quantum
model and illustrated in Figure 4, demonstrated a sub-
stantial binding affinity to KRAS G12D, registered at
1.4µM . To delve deeper into this molecule’s effectiveness
across a spectrum of KRAS mutations, we commenced
an extensive series of tests using a cell-based assay.
Specifically, we evaluated the molecule’s performance
in a biological context, employing a commercial cell
viability assay (CellTiter-Glo; Promega) in conjunction
with MaMTH-DS, an advanced split-ubiquitin-based
platform for the real-time detection of small molecules
targeting specific cellular interactions [53–59].

Further, the biological efficacy of ISM061-018-2 was
rigorously tested. Interestingly, it demonstrated no
detrimental impact on the viability of HEK293 cells,
even when expressing either KRAS WT or KRAS G12V

1 https://github.com/aspuru-guzik-group/quantum-generative-
models

bait in MaMTH-DS format, and subjected to concen-
trations as high as 30µM for 18-20 hours (Figure 4C).
Subsequent testing using MaMTH-DS across a spectrum
of cell lines expressing various KRAS “baits” (both
WT and five clinically significant oncogenic mutants)
in combination with RAF1 “prey” (a recognized KRAS
effector) revealed a dose-responsive inhibition of interac-
tions, with IC50s in the micromolar range (Figure 4D).
The compound’s activity was not specific to mutants,
as it targeted both WT and mutant interactions with
similar efficacy. It also showed comparable effectiveness
in disrupting the interactions of WT NRAS and HRAS
“baits” with RAF1 “prey” (Figure 4D,E). However, it
was notably less potent, by a factor of 2-3 (based on IC50
comparisons), against our control interaction comprising
EGFR triple mutant “bait” and SHCI adapter “prey”,
an interaction crucial in signalling but functioning
upstream of RAS in the pathway (Figure 4D,E). These
results collectively hint at the potential pan-RAS ac-
tivity of ISM061-018-2, albeit with indications of some
off-target effects.

ISM061-22, as illustrated in Figure 5A, also stood out
as a compound of promise, particularly due to its selec-
tivity towards certain KRAS mutants. This compound
demonstrated a mild impact on cellular viability at high
concentrations after 18-20 hours of exposure, as shown in
Figure 5C. Mirroring the performance of ISM061-018-2,
ISM061-22 revealed dose-responsive inhibition of the
interaction between KRAS ”bait” and RAF1 ”prey”
within the micromolar range. Distinctively, it exhibited
a markedly greater effect on mutant KRAS compared
to WT, with the degree of influence ranging from 2-8
fold, depending on the specific mutant. Notably, KRAS
G12R and Q61H displayed the highest sensitivity, as
depicted in Figure 5D,E. Diverging from ISM061-018-2,
ISM061-22 did not show binding to KRAS G12D.
The compound also demonstrated activity against WT
HRAS and NRAS, although it was less potent against
HRAS. Furthermore, ISM061-22’s interaction with the
EGFR control displayed a unique inhibition profile, sta-
bilizing at 50% maximal activity instead of decreasing to
zero, as typically observed in the RAS/RAF interaction
curves (Figure 5D,E). This distinct pattern suggests an
alternative mode of action for ISM061-22, potentially
indicative of partial non-specific activity or a feedback
mechanism influencing the EGFR signaling pathway.

In essence, these live-cell experimental observations un-
derscore the robustness of our approach, effectively iden-
tifying small molecule candidates with biological activ-
ity. This underlines the potential of our methodology to
address and surmount the complexities inherent in tar-
geting clinically challenging biomolecules.
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FIG. 5. Pharmacological Evaluation of Compound ISM061-22 Against KRAS Variants and Other Related
Proteins. (A) Chemical structure of ISM061-22. (B) Results from Cell-Titer-Glo viability assays depicting the effect of the
compound on cellular proliferation over a concentration range from 123 nM to 30 µM. The values represent the mean of three
technical replicates, with standard deviation (S.D.) indicated. (C, Table) Summary of IC50 values derived from MaMTH-DS
dose-response assays conducted in biological triplicate, against various RAS protein baits’ interactions with the RAF1 prey
partner. Tested RAS members include wild-type KRAS, HRAS, and NRAS, as well as five clinically significant oncogenic KRAS
mutants. The EGFR’s interaction with the SHC1 adapter was also examined as an off-target control. The 95% confidence
intervals and R-squared values are reported to confirm the precision of the curve fitting. (C,D) Dose-response curves from
MaMTH-DS assays, illustrating the modulation of activity of different KRAS proteins, NRAS, HRAS, and EGFR, by increasing
concentrations of ISM061-22 (from 4 nM to 30 µM), presented on a logarithmic scale. The curves represent one instance from
three biological replicates. Each data point is the average of three to four technical replicates, with S.D. presented. Curve
fitting procedures were executed in GraphPad Prism, as outlined in the Methods section. The data emphasizes the compound’s
nuanced effectiveness against various protein targets, illuminating its potential therapeutic value.
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III. CONCLUSION

We introduce a hybrid quantum-classical algorithm,
meticulously crafted for near-term quantum computers,
aiming to discover novel ligands for specific molec-
ular targets. Our method ingeniously integrates a
Quantum Circuit Born Machine (QCBM) as a prior
distribution with a classical Long Short-Term Memory
(LSTM) network, enhancing this amalgamation with
a reward function designed to foster the generation
of drug-like small molecules. We benchmarked our
approach through computational evaluations across
two distinct sets of tasks. Initially, we engaged in a
comparative analysis against classical generative models,
focusing on the design of potent small molecule binders
for three different proteins, employing the Tartarus
benchmarking suite. The results highlight our model’s
ability to generate high-quality molecules, registering
the highest success rate across the tasks, albeit with a
marginally lower docking score when juxtaposed with
classical approaches. In addition, we examined the
impact of the number of qubits on the modelling of the
prior distribution and observed a trend that suggests
a roughly linear correlation between the modelling
success rate of generating high-quality molecules and
the number of qubits involved. These findings suggest a
potential advantage of the quantum-enhanced model in
navigating the synthesizable chemical space with greater
efficacy than its traditional classical counterparts while
simultaneously yielding molecules that exhibit strong
binding affinities.

Subsequently, we deployed our model in a practical
scenario to design inhibitors targeting the notoriously
challenging cancer protein, KRAS. In this endeavour, we
experimentally synthesized and evaluated 15 promising
ligands conceived by hybrid and fully classical models.
Our empirical findings substantiated the inhibitory
properties of two molecules, ISM061-018-2 and ISM061-
22, on KRAS, affirming our models’ proficiency in
generating viable new ligands for complex drug targets.
ISM061-018-2 was identified as a binder to KRAS-
G12D, exhibiting a binding affinity of 1.4µM , and
it demonstrated pan-KRAS inhibition. Furthermore,
ISM061-018-2 exhibited specificity towards certain
mutants, showing pronounced activity, particularly
against KRAS G12R and Q61H. Both molecules were
derived from our hybrid methodology, indicating their
superior efficacy to the fully classical model. In addition,
both compounds introduced novel chemotypes distinct
from existing KRAS inhibitors, illustrating our hybrid
model’s capacity to effectively navigate and explore
diverse regions within chemical space.

While the results showcased are promising, they do not
conclusively establish a ’quantum advantage’, defined as
achieving results beyond the reach of classical methods
within a reasonable timeframe. The modest count of

16 qubits in our hybrid algorithm permits simulation
on classical platforms, suggesting that state-of-the-art
classical algorithms might match or even exceed the
efficacy of our quantum-assisted approach. Hence, a crit-
ical future research direction involves comprehensively
assessing our hybrid quantum-classical algorithm’s per-
formance compared to its classical equivalents. Essential
factors for this comparative study include analyzing the
scalability relative to qubit quantity, the intricacies of
qubit types and their interconnections, the influence
of quantum noise and errors, and how the algorithm
measures up against top-tier classical algorithms in
terms of success rates and other crucial metrics like the
docking scores of ligands.

Our research indicates that current near-term quantum
hardware can already be harnessed for practical drug
discovery applications, mitigating the need to wait for
fully fault-tolerant quantum computers, which may be
a decade from fruition. Moreover, since our algorithm
uses only 16 qubits within the realm of classical simu-
lation, it shows how quantum computing can catalyze
the development of more efficient algorithms for classical
hardware. In conclusion, we have introduced a hybrid
quantum-classical algorithm surpassing its classical per-
formance counterpart. The modest qubit count used,
absent any error correction and with limited connectiv-
ity, hints at the potential of more advanced quantum
computers alongside better quantum-classical algorithms
for future drug discovery. With an anticipated increase
in qubits, improved fidelity, error correction capabilities,
and enhanced connectivity, the prospects for quantum
computing in drug discovery are a new frontier of com-
putational and experimental science.
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FIG. 6. Depiction of the Pharmacophore Model for KRAS Inhibitors Based on the Co-crystallized Ligand
Structure Analyzed with Chemistry42 (PDB: 7EW9 [22]). Essential pharmacophoric elements are delineated: a blue
sphere illustrates a ring system that contributes to structural integrity, a green sphere marks a hydrophobic moiety pivotal
for binding affinity, and a cyan sphere signifies a hydrogen bond donor, integral for specificity and interaction with the KRAS
protein. The protein structure is displayed on the right, with the pharmacophore interactions within the KRAS Switch 2
Binding Site illustrated on the left.

TABLE I. Summary of binding kinetics and affinity parameters for reference compounds interacting with the
KRAS G12D mutation. The table presents the on-rate (Kon), off-rate (Koff ), and dissociation constants (Kd) in both
kinetic and steady-state measurements, providing a comprehensive overview of the binding dynamics of MRTX1133 and BI-
2852 compounds with the target protein.

Compound Kon (M−1s−1) Koff (s
−1) Kinetic Kd (M) Steady state Kd (M)

MRTX1133 1.26× 1010 0.0732 5.83× 10−12 –

BI-2852 6.13× 106 0.0101 1.65× 10−9 1.41× 10−8

Appendix A: Methods

This section explains the methods and workflow incorpo-
rated in our proposed approach, offering a comprehensive
understanding of the mechanisms used in our study. Fig-
ure 1 illustrates the workflow we employed in our study.

1. Data Acquisition and Pre-processing

Our preliminary dataset, sourced from Insilico
Medicine2, included approximately 650 data points.
These were selectively collated from existing literature,
specifically targeting the KRAS G12D mutation (refer
to Figure 1). Given the dataset’s limited size, we opted
to expand it to improve the robustness of our model

2 https://insilico.com/
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TABLE II. Dissociation constants (Kd) for a series of newly generated compounds, illustrating their binding
affinities to the KRAS G12D protein. Five of the twelve compounds evaluated demonstrated discernible binding affinities,
with one notable compound achieving binding affinity in the single-digit micromolar range. Contrasting with the reference
inhibitors, these compounds exhibit a ’fast off’ kinetic profile, which may hold significance for their pharmacodynamic properties.
While their affinities are considered weak for immediate therapeutic application, these compounds, synthesized from a small
and structurally diverse training set, represent promising scaffolds for further optimization in pursuit of novel KRAS protein
inhibitors.

Compound Kd (µM) Compound Kd (µM) Compound Kd (µM) Compound Kd (µM)

ISM061-6 39.1 ISM061-18 19.2 ISM061-14 N/A ISM061-22 N/A

ISM061-11 N/A ISM061-18-2 1.4 ISM061-15 N/A ISM061-4 N/A

ISM061-13 N/A ISM061-21 56.9 ISM061-16 N/A ISM061-24-2 16

Note: N/A – No Activity observed.

during training.

a. STONED-SELFIES

We utilized the STONED-SELFIES [25] algorithm, avail-
able at https://github.com/aspuru-guzik-group/stoned-
selfies, to mine our initial set of 650 molecules. For a
given molecule in SMILES format, we first randomized
the string using RDKit3. These randomized strings were
then converted into SELFIES. Each SELFIES string un-
derwent mutations—in the form of character deletions,
replacements, and additions—up to 500 times. Subse-
quently, the synthesizability and stability of the mutated
strings were assessed using Chemistry42. We generated
850k molecules, which served as the training set for our
generative models.

b. Virtual Screening Process

VirtualFlow 2.0 [60] was used to identify additional
molecules predicted to bind to KRAS G12D. The adap-
tive target-guided (ATG) method performed the virtual
screening in two stages. In the first stage, the ATG pre-
screen was performed, in which a spare version of the 69
billion REAL Space from Enamine (version 2022q12) was
screened. In the second stage, the most potent tranches
of ligands were screened in full, amounting to 100 mil-
lion ligands. The docking program used was QuickVina
2 [47], with exhaustiveness set to 1 in both stages of the
screen. The screen was carried out in the AWS (Amazon
Web Services) cloud computing platform. The protein
structure used in the screen is the PDB structure 5US4
[61], which was prepared before the virtual screen with
Schrödinger’s Protein Preparation Wizard (addition of
hydrogens, protonation state prediction). The docking
box was of size 14x14x20 Angstrom.

3 https://www.rdkit.org/

2. Quantum Assisted Algorithm

As Figure 1 shows, Our quantum-assisted model is a
hybrid algorithm composed of both quantum and clas-
sical generative components. The quantum genera-
tive model utilizes a Quantum Circuit Born Machine
(QCBM) model, while the classical component utilizes
a Long Short Term Memory (LSTM) model. Figure 2 il-
lustrates the flowchart of our proposed generative model.
Within this model, we utilized Chemistry42 and a local
filter to validate sample generation at each step, which
was then employed to train the QCBM model. The
QCBM model, a quantum circuit model, was executed
on a quantum processing unit. Subsequently, samples
from the trained QCBM were fed into the LSTM model,
which generated sequences based on these samples. The
reward value for each sample was computed at every step
using Local filter until epoch 20, and after we selected
Chemistry42. This reward value was then used to train
our quantum generative model. During the first epoch,
no rewards were available, so the algorithm sampled from
the untrained QCBM model, designated as Xi. From the
second epoch onward, rewards were computed, allowing
us to calculate the Softmax of the rewards for each Xi,
where i ∈ [1, N ]. The corresponding pseudocode can be
found in Algorithm A.1.

a. QCBM Model

The Quantum Circuit Born Machine (QCBM) model rep-
resents a quantum variational generative model, necessi-
tating a classical optimizer to train its parameters. The
total count of these parameters is computed with the
number of qubits and layers defined in the model (re-
fer to Figure 7). Upon specifying the parameters, de-
noted as θn, we obtain a quantum state |ψ(θ)⟩. Here,
each θn exerts an impact on the wave function, expressed
as ψ(θ). To optimize these parameters θ, the model is
initially configured with randomly assigned parameters
|ψ(θ)⟩. These parameters are subsequently calculated
throughout the training process. The training of the

https://github.com/aspuru-guzik-group/stoned-selfies
https://github.com/aspuru-guzik-group/stoned-selfies
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QCBM model involves minimizing the Exact Negative
Log-Likelihood (Exact NLL) loss function.

b. Classical Model: LSTM Model

Long Short-Term Memory (LSTM) networks (see Fig-
ure 1) are employed for a classical part of this architec-
ture. LSTM is simple and has a good record of learn-
ing the string pattern in natural language processing for
a long time. LSTM networks are specialized Recurrent
Neural Networks (RNN) capable of learning long-term
dependencies in sequence data [62]. They are particu-
larly useful in applications where the context from earlier
parts of the sequence is needed to interpret later parts,
such as in natural language processing, time-series fore-
casting, and more [63]. The LSTM architecture consists
of a chain of repeating modules called cells. Each cell
contains three gates that control the flow of information:

1. Forget Gate: This gate decides what information
from the cell state should be thrown away or kept.
It takes the output of the previous LSTM cell and
the current input and passes them through a sig-
moid function, outputting a number between 0 and
1 for each number in the cell state. A 0 means
“completely forget this” and a 1 means “completely
keep this.”

2. Input Gate: This gate updates the cell state with
new information. It has two parts: a sigmoid layer
called the “input gate layer” and a hyperbolic tan-
gent layer. The sigmoid layer decides what values
to update, and the hyperbolic tangent layer cre-
ates a vector of new candidate values that could be
added to the state.

3. Output Gate: This gate decides the next hidden
state. The hidden state contains information on
previous inputs. The hidden state is used to calcu-
late the output of the LSTM and the next hidden
state.

The following equations can describe the LSTM’s opera-
tions:

Forget Gate: ft = σ(Wf · [ht−1, xt] + bf ) (A1)

Input Gate: it = σ(Wi · [ht−1, xt] + bi) (A2)

Candidate Values: C̃t = tanh(WC · [ht−1, xt] + bC)
(A3)

Update Cell State: Ct = ft · Ct−1 + it · C̃t (A4)

Output Gate: ot = σ(Wo · [ht−1, xt] + bo) (A5)

Update Hidden State: ht = ot · tanh(Ct) (A6)

Where σ is the sigmoid activation function, W and b are
the weight matrices and bias vectors for each gate, and
xt is the input at time t [64].
Training an LSTM involves optimizing the network’s
weights and biases to minimize a specific loss function.

This is typically accomplished using gradient-based opti-
mization algorithms such as stochastic gradient descent
(SGD) or Adam [65]. The backpropagation through time
(BPTT) algorithm is employed to compute the gradients
relative to the loss function, considering the sequential
nature of the data [66]. The networks are trained using
the Adam Optimizer with the Negative Log Likelihood
Loss function, and to mitigate overfitting, regularization
techniques like dropout are implemented [67]. The Neg-
ative Log-Likelihood Loss for a single data point is given
by:

L(y, ŷ) = − log(ŷy) (A7)

where y is the true class label, and ŷy is the predicted
probability for the true class label y.
The loss for a batch of data is the mean of the individual
losses for each data point in the batch:

L = − 1

N

N∑
i=1

log(ŷyi) (A8)

Where N is the number of data points in the batch, yi is
the true class label for the i-th data point, and ŷyi

is the
predicted probability for the true class label of the i-th
data point.
In the hyperparameter tuning process, we utilized Op-
tuna4, an optimization framework, to adjust parameters
such as the number of hidden dimensions, embedding
dimensions, and layers within the model. The model
presented in this research integrates a deep learning ar-
chitecture. This architecture is designed to incorporate
prior information (samples) into the generative process.
Additionally, the model employs Chemistry42 feedback
in conjunction with Quantum Circuit Born Machines
(QCBM), aiming to enhance its generative accuracy. Fig-
ure 2(B) illustrates the proposed architecture at a cell
level. The prior samples are combined with Input sam-
ples x′t = X(i) ++ xt in LSTM cell; This combination
has two methods: adding and concatenating samples.
LSTM’s operations will be updated with

Prior Sampling x′t = X(i) ++ xt

OR x′t = X(i) + xt (A9)

Forget Gate: ft = σ(Wf · [ht−1, x
′
t] + bf ) (A10)

Input Gate: it = σ(Wi · [ht−1, x
′
t] + bi) (A11)

Candidate Values: C̃t = tanh
(
WC · [ht−1, x

′
t] + bC

)
(A12)

Update Cell State: Ct = ft · Ct−1 + it · C̃t (A13)

Output Gate: ot = σ(Wo · [ht−1, x
′
t] + bo) (A14)

Update Hidden State: ht = ot · tanh(Ct) (A15)

4 https://optuna.org/
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To generate samples, the process begins with sampling
from the prior, followed by the LSTM network process-
ing these prior samples to generate compounds repre-
sentations. The compounds will be validated through
the Chemistry42 platform, specifically tailored to as-
sess ligand quality for the KRAS G12D mutation. This
methodology offers designing ligands targeted at specific
proteins. Moreover, the LSTM model is a classical ap-
proach for learning ligand structures and constructing a
latent ligand space. The Quantum Circuit Born Machine
(QCBM) functions as a prior, guiding the LSTM in the
generation of novel ligand samples. This procedure is
subjected to an iterative process to enhance the qual-
ity of ligands, which is evaluated using the Chemistry42
platform.

c. Quantum Generative Model: QCBM Model

The QCBM is a variational quantum algorithm that
utilizes the foundational principles of quantum mechan-
ics, particularly the Born rule, to generate complex
and diverse data samples. The core of our QCBM
model is a parameterized quantum state |ψ(θ)⟩, where
θ denotes the parameters, or ansatz, of our quantum
circuit. As per the Born rule, given a measurement
basis, which is commonly the computational basis in our
case, the probability of observing a specific outcome |x⟩
is expressed as |⟨x|ψ(θ)⟩|2.

Training a Quantum Circuit Born Machine (QCBM) in-
volves optimizing the parameters of the quantum circuit
to produce a probability distribution that closely approx-
imates the target distribution (Probability that is com-
puted by chemistry Reward values. This process is fun-
damentally iterative, where the quantum circuit param-
eters, denoted as θ, are adjusted in each step to reduce
the discrepancy between the generated and target distri-
butions. A classical optimization algorithm recommends
adjusting parameters, which operates based on the feed-
back received from the evaluation of the circuit’s out-
put. At each iteration, the quantum circuit is sampled
to produce a set of states. These states are then com-
pared against the target distribution, and the difference
between them informs the direction and magnitude of
parameter adjustments in the quantum circuit. This it-
erative process continues until the distribution generated
by the QCBM closely aligns with the target distribution
or until a predefined convergence criterion is met.
In the context of QCBM training, the Exact Negative
Log-Likelihood (Exact NLL) functions as the primary
loss function, providing a quantitative measure of the
difference between the distributions. The Exact NLL for
a QCBM is the negative sum of the logarithms of the
probabilities the quantum circuit assigns to the states in
the training dataset. Mathematically, this is represented
as NLL(θ) = −

∑
x∈D log pθ(x), where D is the set of

data points, and pθ(x) is the probability of observing

state x under the current parameters θ of the quantum
circuit. Minimizing the NLL involves adjusting θ such
that the quantum circuit’s output distribution increas-
ingly resembles the empirical distribution of the data.
This optimization is typically carried out using gradient-
based methods or other heuristic techniques suited to
the quantum computing context. In our project, we used
COBYLA for our optimizer. As the NLL decreases, the
fidelity of the QCBM in modeling the target distribution
correspondingly increases, indicating successful training
of the quantum model.
Figure 7 shows the QCBM architecture and illustrates
its associated ansatz. We used linear topology for our
project. Our QCBM model is built with 16 qubits and
4 layers, and we had 96 parameters to optimize in total.
The initial probability of the samples, P (X(i)), is com-
puted based on the rewards returned by the Chemistry42
model. These reward-based probabilities are then passed
through a Softmax function to ensure they are normal-
ized and fall within the range of 0 to 1. The resulting val-
ues serve as the ”true” probabilities of the samples and
are used as the target values during the model’s training
process.

3. Benchmark Setup

Our benchmark uses both classical and quantum hard-
ware. Our classical computational setup is based on a
cluster equipped with GPU nodes. This cluster consists
of two GPU nodes, each with specific features. These fea-
tures include two AMD EPYC 7V13 64-core Processors,
resulting in a total of 128 CPU cores per node. In addi-
tion, each node is equipped with 512 GB of RAM. The
nodes also contain eight AMD Instinct™ MI100 GPUs,
each with a GPU RAM of 32GB. For the classical train-
ing, we utilized four of these GPUs in parallel (i.e.,
one GPU node). Furthermore, we used a Nvidia GPU
(RTX3090Ti) to facilitate our classical quantum simula-
tions. For the quantum hardware setup, we employed the
Guadalupe quantum system, equipped with 16 Qubits
and a Falcon r4P processor type. Our Quantum Circuit
Born Machine (QCBM) model, accompanied by an error
correction circuit, was executed on this quantum proces-
sor.
Regarding software, we utilized several packages provided
by Zapata AI under the Qml core agreements 5. We im-
plemented our Variational Quantum Circuit and classical
LSTM model using the Qml Core Python package. We
used the STONED-SELFIES and VirtualFlow 2.0 pack-
ages to prepare a diverse dataset. Additionally, we em-
ployed RDkit and Insilico APIs to compute the reward
value and conduct some post-processing analyses. The
QCBM model underwent a training regimen spanning 30

5 https://docs.orquestra.io
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Classical 
Optimizer

FIG. 7. Schematic representation of the Quantum Circuit Born Machine (QCBM) implemented in our numerical
experiments, illustrating a variational quantum circuit with a configuration of three layers and four qubits. In practice, our
numerical experiments utilized a system with 16 qubits. The depicted quantum gates, including parameterized rotations (Rx,
Rz) and entangling CNOT gates, are orchestrated to evolve the initial state |0⟩ into a complex quantum state |ψ(θ)⟩. The
outcome is measured, and the resulting data are used by the classical optimizer to iteratively refine the parameters θ, thus
leading the circuit towards an optimal solution for ligand generation.

epochs. In contrast, the LSTM model was trained over
a total of 40 epochs.
We utilized the Optuna platform to optimize the hyper-
parameters in the benchmarking. We ran Optuna tuning
for 100 trials for each model, to determine the optimal
number of QCBM layers, LSTM layers, and embedding
dimensions. Additionally, we tuned the sampling tem-
perature, which defines the balance between determinism
and stochasticity in the model, particularly between the
prior input and the LSTM output.

4. SPR Conditions

A Biacore 8K system was used for all experiments.
For preliminary compound screening, N-terminal biotiny-
lated KRASG12D protein (synthesized by VIVA Biotech
(Shanghai) Ltd, purity ≥ 95%) was captured on a Sensor
Chip SA (GE Healthcare) at a density of about 2000RU.
Protein immobilization was done using 1x HBS-EP+,
2mM TCEP, 2% DMSO as a running buffer. Protein
was injected for 70s at a flow rate of 5µL/min. The pro-
tein concentration was 5µg/mL. We performed an initial
screening of compounds prepared samples by serial 2-fold
dilutions from 200µM to 0.39µM in 1x HBS-EP+, 2mM
TCEP, 2% DMSO. Samples were injected for 60s at a
flow rate of 30µL/min and dissociation time was 180s.
A Biacore 8K machine was used to carry out the SPR

experiments and subsequent data analysis.

5. MaMTH-DS Dose-Response Assays

MaMTH-DS FLP HEK293 reporter cell lines[53] stably
expressing KRAS (WT or mutant), HRAS, NRAS or
EGFR triple mutant L858R/T790M/C797S bait along-
side RAF1 (for RAS baits) or SHC1 (for EGFR) preys
were seeded into 384-well white-walled, flat-bottomed,
tissue-culture treated microplates (Greiner #781098) at a
concentration of 100,000 /mL ( 50µL total volume/well)
in DMEM/10% FBS/1% Pen-Strep media. Seeding was
performed using a MultiFlo-FX multi-mode liquid dis-
penser (BioTek). Plates were left at room tempera-
ture for 30-60 minutes following seeding before trans-
fer to a Heracell 150i incubator (Thermo) and growth
at 37◦C/5% CO2 for 3 hours. After growth 10µL
of DMEM/10%FBS/1% Pen-Strep supplemented with
3µg/mL Tetracycline (to induce bait/prey expression;
BioShop, TET701) and 60ng/mL EGF (to stimulate
RAS signaling; Sigma #E9644) was added to each well
via multichannel pipette. As appropriate, 6X concentra-
tion of drug (or DMSO only) was also included in the
media, with all lower concentrations produced via serial
dilution starting from the highest concentration solution.
Plates were then grown overnight ( 18 − 20 hours) at
37◦C/5%CO2. Luciferase assay was performed the next
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day using 10µL of 20µM native coelenterazine substrate
(Nanolight #303) per well. Luminescence was measured
using a Clariostar plate reader (BMG Labtech) with a
Gain of 3200-3800 and a 1 second integration time. All
data analysis was performed using Microsoft Excel and
GraphPad Prism. Curve fits were performed in Prism
(non-linear regression, log(inhibitor) vs. response, vari-
able slope (4 parameters) with bottom constrained to
zero, except for EGFR-SHC1 in the presence of ISM061-
22, for which no constraint was applied).

6. Cell Viability Assay

MaMTH-DS FLP HEK293 reporter cell lines[53] stably
expressing KRAS (WT or G12V mutant) bait alongside
RAF1 prey were seeded into 96-well white-walled,
µCLEAR® flat-bottomed, tissue-culture treated plates
(Greiner #655098) at 40 000 cells/well in DMEM/10%
FBS/1% Pen-Strep media (60µL total volume/well).
Seeding was performed using a MultiFlo-FX multi-mode
liquid dispenser (BioTek). Plates were left at room
temperature for 30-60 minutes following seeding before

transfer to a Heracell 150i incubator (Thermo) and
growth at 37◦C / 5% CO2 for 3 hours. After growth
30µL of 3X concentration of the drug (or DMSO only)
in DMEM/10%FBS/1% Pen-Strep media were added to
wells, with all lower concentrations produced via serial
dilution starting from the highest concentration solution
(final drug concentration 30µM to 123nM). 37◦C/5%
Plates were then grown overnight (18-20 hours) at 37◦C/
5% CO2. Effect of the drug on cell viability was assessed
by CellTiter-Glo® Luminescent Cell Viability Assay
from Promega (#G7570). 90µL of the CellTiter-Glo®

reagent were added directly into each well following 30
min equilibration of the plate at room temperature.
Contents of the wells were mixed on an orbital shaker
for 2 min, and plates were then incubated at room
temperature for 10 minutes to stabilize luminescent
signal. Luminescence was measured using a Clariostar
plate reader (BMG Labtech) with a Gain of 3600 and
a 1 second integration time. Values represent the
mean ±S.D. of three replicates for each tested drug
concentration. All data analysis was performed using
Microsoft Excel and GraphPad Prism.
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Algorithm A.1. overview of Quantum-Assisted Drug Discovery using an LSTM framework. This pseudocode details
the iterative process, starting with the initialization of the LSTM and QCBM models, followed by the generation and validation
of new compounds. Valid compounds are subjected to a reward calculation and probability assessment, which in turn inform the
subsequent training of the QCBM (detailed in Algorithm A.2). This cycle continues until convergence, illustrating the dynamic
interplay between quantum predictions and LSTM-generated compounds underpinned by the Chemistry42 evaluation.

1: Initialize: LSTM, QCBM, filter (Chemistry42)
2: Generate initial samples Xi from QCBM
3: while not converged do
4: Train LSTM with Xi

5: LSTM generates a new compound from the current samples Xi

6: Validate the new compound with the filter
7: if new compound is valid then
8: Compute rewards for the new compound
9: Compute probabilities P (Xi) for each new compound

10: Train QCBM with Xi and P (Xi)
11: Generate new Xi from QCBM
12: end if
13: end while

Algorithm A.2. pseudocode outlining the training regimen for the Quantum Circuit Born Machine (QCBM)
model. This process delineates the iterative optimization of the QCBM parameters.

1: Initialize: QCBM model with a certain number of qubits and layers
2: Set: Parameterized quantum state |ψ(θ)⟩
3: while not converged do
4: Compute exact negative log-likelihood (exact NLL) loss function
5: Compute gradient of exact NLL with respect to θ
6: Adjust parameters using an optimizer
7: Validate the sample and compute its reward value
8: if sample is valid then
9: Compute rewards for the sample

10: Adjust probabilities P (Xi) based on the rewards
11: Train QCBM model with adjusted probabilities
12: end if
13: end while
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