Quantum-Inspired Optimization for Industrial Scale Problems

William P. Banner,!* Shima Bab Hadiashar,?* Grzegorz Mazur,? 3 * Tim Menke,* % 6> T Marcin Ziolkowski,”
Ken Kennedy,”# Jhonathan Romero,? Yudong Cao,? % Jeffrey A. Grover,* and William D. Oliver" 42 ¥

! Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Zapata Computing, Inc., 100 Federal St, 20th Floor, Boston MA, 02110 USA
3 Department of Computational Methods in Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakéw, Poland
4 Research Laboratory of FElectronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
5 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
S Department of Physics, Harvard University, Cambridge, MA 02138, USA
"BMW Group Information Technology Research Center, 2 Research Dr., Greenville, SC' 29607, USA
(Dated: May 3, 2023)

Model-based optimization, in concert with conventional black-box methods, can quickly solve
large-scale combinatorial problems. Recently, quantum-inspired modeling schemes based on tensor
networks have been developed which have the potential to better identify and represent correlations
in datasets. Here, we use a quantum-inspired model-based optimization method TN-GEO to assess
the efficacy of these quantum-inspired methods when applied to realistic problems. In this case,
the problem of interest is the optimization of a realistic assembly line based on BMW’s currently
utilized manufacturing schedule. Through a comparison of optimization techniques, we found that
quantum-inspired model-based optimization, when combined with conventional black-box methods,

can find lower-cost solutions in certain contexts.

I. INTRODUCTION

Large-scale integer combinatorial optimization prob-
lems represent one of the broadest classes of hard prob-
lems relevant to real-world applications [1]. A major dif-
ficulty in executing such tasks lies in the inability of con-
ventional optimization methods to effectively sample the
full state space. In addition, the constraints of a discrete
optimization space preclude the use of efficient optimiza-
tion methods such as the simplex method or Bayesian
Optimization method which rely on smoothness to prop-
erly estimate correlations and gradients. Commonly
tested examples of combinatorial problems in the liter-
ature include the travelling salesman problem or max-
cut problem. These problems have a well-defined and
easily-representable structure that can be exploited dur-
ing solving. In practice, however, many combinatorial
problems are difficult to write so explicitly, and fall un-
der the category of black-box problems. These problems
include scheduling and design problems.

The curse of dimensionality, endemic to combinatorial
problems, has been greatly diminished by the combined
use of conventional optimization methods with machine
learning techniques [2-5]. Historically, these models have
taken a number of forms, but many popular methods in-
clude Bayesian optimization, Model-based Evolutionary
Algorithms, and Cross Entropy Methods [6-8].

* These authors contributed equally to this work.

T Current address: Atlantic Quantum, Cambridge, MA

¥ Current address: Fulfilld.io, 70 South Cherry St, Denver, CO
80246

§ yudong@zapatacomputing.com

9 william.oliver@mit.edu

In parallel with these advances, new techniques for gen-
erative modeling known as Born machines have been de-
veloped based on physical phenomena — specifically quan-
tum systems [9, 10]. In recent years, such generative
models have been proposed to assist in solving combi-
natorial optimization problems through the Generator-
Enhanced Optimization (GEO) framework [11]. In that
work, the authors used quantum-inspired model known
as Tensor Network Generator Enhanced Optimization
(TN-GEO), which uses a tensor-network-born-machine-
based generative model to enhance the performance of
conventional optimization methods. More specifically,
the authors demonstrate their framework by applying it
to a realization of the portfolio optimization problem.
These “quantum-inspired” generative models include re-
sources such as entanglement to capture dependencies
within a system that are not explicitly known a priori
[12-15]. This change in representation as compared with
conventional methods may provide new heuristics for ex-
ploitation during optimization.

In this work, TN-GEO was used to assess the perfor-
mance of quantum-inspired optimization in solving a par-
ticular instance of a hard industry-relevant combinatorial
optimization problem, solving a BMW production plan-
ning problem. The instance that we consider is realistic,
with practical utility to BMW and to other manufactur-
ers more broadly. We directly compare the performance
of several related generator enhanced optimizers to the
performance of conventional optimization methods in or-
der to determine the existence and type of advantage
gained by the model-based process.

We found that quantum-inspired generator enhanced
optimization either meets or exceeds conventional meth-
ods of optimization for the BMW production planning
problem in a majority of tested cases. The highest per-

mailto:yudong@zapatacomputing.com
mailto:william.oliver@mit.edu

a) Stage 1

Stage 3
Body Paint
Shop 1 Shop 1
Body Paint
Shop 2 Shop 2
Storage Storage
Lot 1 Lot 2
Production Rates
Work Shifts

Stage 2

)

N
el

)
-/

b) [Production Output Produced —

Optimizer
Idle Hours (1 Body — Paint
Assembly —
_,—'_l—._|_|_,_|—'_|_‘_

— Y, 0, |

\

Idle Hours
Production Output

FIG. 1. A) A high-level view of the production planning prob-
lem with shops and storage labeled. B) A stylized diagram
of the optimization procedure. First, the parameters of the
optimization, in the form of production rates and work shifts,
are used to perform a time-domain simulation of the assembly
line. From this simulation, the number of idle hours for each
month and cars produced each month is retrieved. These val-
ues are used to generate a cost using the cost function.

formance was achieved when the problem was formulated
such that the correlations between parameters were effi-
ciently encoded. In fact, these “problem-inspired” con-
figurations improved the performance of all the consid-
ered optimizers. Our results support the conjecture that
problem-specific knowledge is an important component
of optimizer selection, even among blackbox optimization
methods [16-18]. In addition, we found that intermediate
problem knowledge was best for accurate model-based
optimization in this setting.

In the following, we describe the BMW production
planning problem formulations, explain the use of prob-
lem knowledge, in particular the preprocessing of cost-
function evaluations, define the optimizers used for
benchmarking and analysis, and show numerical results
characterizing optimizer performance. We conclude by
summarizing the best contexts for model-based optimiza-
tion.

II. PROBLEM DESCRIPTION AND
FORMULATIONS

The production planning problem involves the opti-
mization of a BMW assembly line. In a BMW assembly
line, as shown diagramatically in Fig. 1, car production
proceeds as follows:

1. Car bodies are fabricated in a first stage consisting
of two parallel body shops.

2. Car bodies are stored in a storage lot with capacity
limit 500.

3. Car bodies are painted in a second stage consisting
of two parallel paint shops.

4. Painted car bodies are stored in a storage lot with
capacity limit 700.

5. Finished cars are assembled in a third stage con-
sisting of two parallel assembly shops.

The problem is constrained such that each shop op-
erates only during specific time periods or shifts and at
certain rates. There are 15 discrete options for the shifts
that shops can follow and 5 discrete options for the rates.
Given that there are 6 different shops, there are about
244 million ways in which the assembly line can be con-
figured.

Over the course of one year, the assembly line is re-
quired to produce a number of cars (P;) to meet pro-
duction targets (T;) on the order of thirty thousand cars
per month ¢. At the same time, the line should be as
efficient as possible, minimizing the hours per month 4
during which each shop j is idle (I;;). This idling is
due to storage lot overflows or underflows caused by mis-
matched shop working schedules. These two performance
metrics — production and efficiency — are quantified using
a weighted (W) cost function.

12 months 6 shops
C= Y Ti-Pl+W Y Iy
i=1 =1

For the purposes of this work, the weighting (W) was
chosen such that typical variations in idle hours are on
the same order as monthly production and target vari-
ations. For our specific problem, idle time with respect
to scheduled time typically varies at the single percent-
age level, whereas production variations with respect to
targets are on the order of hundreds of cars per month,
leading to a weighting of 1000. For a given assembly
line state, that is, the set of shift schedules and produc-
tion rates used by the line, a time-domain simulation of
the assembly line is performed which directly tracks the
monthly production and idle hours. Additional details of
the simulation are provided in Section D. An illustration
of the time-domain simulation process is given in Fig. 1.

Two different parameterizations were investigated to
elucidate the impact of problem knowledge on problem
performance. By parameterization, we refer to the man-
ner in which production rates and shift schedules are rep-
resented and can be changed. The first parameterization
is a basic “12-body” or “no-knowledge” parameteriza-
tion. This parameterization considers all parameters as
independent with 6 shift parameters, each ranging from
1 to 15, and 6 production rate parameters, each ranging

TABLE I. Sizes of the reduced solution spaces.

Solution space Solution space size

2% noDev 384
2.5% mnoDev 1056
5% noDev 11856
100% noDev 11390625
1.5% yesDev 4777500
2% yesDev 12329982
2.5% yesDev 22261792
5% yesDev 202461840
100% yesDev 177978515625

from 1 to 5. A change in shift can therefore occur in a
single update step (e.g., changing a shift parameter from
shift schedule 4 to shift schedule 5). This parameteri-
zation is beneficial as it assumes little about inter-shop
interactions, allowing solvers to explore these interactions
themselves.

A second “three-body” or “problem-inspired” param-
eterization is also explored, which uses the assembly line
structure to inform parameter representation. Each set of
body, paint, and assembly shops is combined into a single
data entry, such that the problem reduces to only three
parameterized stages. In this case there are 5625 states
for every stage, accounting for the total number of pos-
sible states for two shops, each having one shift parame-
ter with 15 options, and one production rate parameter
with 5 options. The single-stage states are then ordered
by their individual ideal output in cars per hour. Such
a parameterization treats correlations between stages as
having less impact than those within stages, an assump-
tion based on problem intuition that may not be valid
for all parameter settings.

III. PREPROCESSING
A. Search space reduction

Preprocessing is utilized to effectively reduce the prob-
lem space in a deterministic manner, which is a practi-
cal and often necessary step for many large optimization
problems [19, 20]. The preprocessed configurations ex-
trapolate the ideal annual car production of each assem-
bly line state when buffer limits are ignored and compare
it to the annual production target, that is, the sum of
the monthly targets (see Appendix A1 for details). If
the state produces enough cars to be within 5%, 2.5%,
2%, or 1.5% of the annual target, it is included in the
allowed state space. The preprocessed configurations are
therefore referred to as “Reduced-5%", “Reduced-2.5%”,
“Reduced-2%”, and “Reduced-1.5%" (see Appendix A 2
for details). However, we note that the minimum reduc-
tion percentage that conserves the global minimum is not
known a priori. This was verified in the cases studied
here.

B. State encoding

In the “three-body” representation (whether reduced
or not), every state is designated by a triple of natural
numbers. However, TN-GEO requires states to be repre-
sented as bitstrings (sequences of binary digits). In this
work, we compare three different binary encodings. The
simplest approach is to enumerate all triples, and then
encode the number of every state as a binary number.
We call this the basic encoding.

While simple, the basic encoding may not adequately
represent the structure of the problem. This is because
states that are close to each other by parameterization
may have significant Hamming distance incurred via the
basic encoding. We tested a method of alleviating this
by applying the Gray encoding [21] to every part of the
triple, padding with zeros if necessary, and concatenating
into a bitstring.

A significant factor that may negatively impact the ef-
fectiveness of both of the straightforward representations
described above is the fact that nearest neighbours may
have significantly different production costs. We test a
method for minimizing this impact by enumerating the
single-stage states of the first stage according to the ab-
solute value of the difference between the estimated pro-
duction of the first stage and the target production. For
the remaining stages we use a slightly different ordering,
employing the absolute value of the difference between
estimated production of the given stage and that of the
first stage. We call this reordering the Production Guided
(PG) encoding (see Appendix A4 for details). Then we
apply the Gray encoding to every part of the triple, pad
with zeros if necessary, and concatenate into a bitstring.
We call this two-step encoding the PGGray encoding.

IV. OPTIMIZATION

The conventional optimization methods in this work
include one-crossover, two-crossover, and uniform-
crossover genetic algorithms (GA1, GA2 and GAU, re-
spectively), simulated annealing (SA) [22, 23], and paral-
lel tempering (PT) algorithms. These algorithms are the
most commonly investigated algorithms in the literature
and should provide an even benchmark for testing TN-
GEO performance [1]. These conventional methods run
until 240 cost function evaluations are reached, a limit
chosen to fall within the typical black-box optimization
run times of hundreds of cost function evaluations.

When using TN-GEO to boost a conventional solver,
the first 100 cost function evaluations of the conven-
tional solver are incorporated into the TN-GEO model,
and model-based optimization begins. The quantum-
inspired model-based optimization step relies on TN-
GEO, a method described in Ref. [11] and illustrated in
Fig. 2. This model uses a Matrix Product State (MPS),
a specific type of Tensor Network (TN), to represent the
solution space. In each iteration of TN-GEO, the model

cost

solution

New set of
(solution,
cost)

conventional
solver (CS)

initial set of
(solution,cost),

CS history

(o)
history has 240
solutions?

Yes

¥

Stop CS

Conventional solver (CS)

car plant simulator

solution

cost

binary
decoder

binary
solution

initial training
data (binary
solutions, costs)

TN-GEO
(booster mode)

binary
encoder

pass the current history
as the training set

10 new pairs of
| .| (binary solution,
cost)

TN-GEO/CS
histor

first 100 of
CS history

TN-GEO
history

TN-GEO/CS
history has 240
solutions?

No.

Y
Stop
TN-GEO

TN-GEOQ as a booster for CS

FIG. 2. Scheme of our approach for benchmarking a conventional solver against TN-GEO as a booster for that conventional

solver.

is first trained on a seed data set of all evaluated states
and their costs up to that iteration. This set is initially
generated by the conventional optimization step. Train-
ing of TN-GEO on this data set is performed based on a
gradient method used in a previous study [24]. The TN-
GEO model is then sampled to generate a set of likely
low-cost states. From these states, the ones that are new
(not evaluated before) are then pruned according to prob-
lem constraints and a fixed-size subset of them is chosen
(according to some heuristics) to have their costs evalu-
ated explicitly on the BMW production planning prob-
lem. These states and their costs get added to the seed
data set and the solver iterates until convergence or until
a maximum number of cost evaluations is reached. (See
Fig. 1 of Ref. [11] for more details.)

V. RESULTS

Our first numerical investigation explored the differ-
ence in optimizer performance owing to problem param-
eterization. Each optimizer is implemented as described
in Appendix B and Section IV and allowed to run for
an empirically-based choice of 240 cost-function evalua-
tions (TN-GEO) being performed explicitly on only the
final 140, as described in Section IV. These sets of opti-
mization trials were then repeated using 300 randomized
initial states to acquire statistical data. The averaged
results of this study are plotted in Fig. 3. All optimiz-
ers, regardless of their type (conventional or quantum-
inspired) perform significantly better when the problem
is formulated in the 3-body parameterization, achieving
lower costs in fewer iterations on average.

Average Performance for 3-Body and 12-Body

m— (12) GA1 (3) GA1

m— (12) GA2 = (3) GA2

m— (12) GAU m— (3) GAU

m— (12) SA m— (3) SA

m— (12) PT m— (3) PT
i 102 4 mem= (12) TN-GEO GA1 === (3) TN-GEO GAl
8] « == (12) TN-GEO GA2 === (3) TN-GEO GA2
= me= (12) TN-GEO GAU === (3) TN-GEO GAU
© === (12) TN-GEO SA == (3) TN-GEO SA
g (12) TN-GEO PT = (3) TN-GEOPT |

100
Iteration

150

FIG. 3. Performance of all optimizers for 3-body and 12-
body formulations of the problem. We note that 0 as defined
in this plot is not the global minimum but instead is the
global minimum of a simplified form of the problem, as the
true global minimum is not known. See text for the detailed
protocol of calculations.

Following this investigation, we focused solely on the
3-body parameterization and performed a comparison of
binary encoding methods across all state spaces given in
Table I (basic, Gray and PGGray encodings). As before,
for each scenario, we ran each conventional solver 300
times to accumulate statistics, performing up to 240 cost
evaluations each time. A description of the conventional
solvers and hyperparameters used in these benchmarks
are provided in Appendix B.

For TN-GEO an important hyperparameter is the

maximum bond dimension of the Matrix Product State
which controls the expressivity of the tensor network and
is an indicator of the correlation radius in the training
data. For the problem at hand, we tested TN-GEO per-
formance while sweeping this parameter, as shown in C.
Through this process we found that a maximum bond
dimension of 6 is optimal as it achieves equal or bet-
ter performance (across solvers and state space sizes) as
compared to other bond-dimensions.

The results of these studies (for a maximum bond di-
mension of 6) are depicted in Fig. 4, where there is a
heatmap for each state encoding. The number within
each heatmap square indicates the largest amount (of
the 300 runs) by which TN-GEO, when trained using
the first 100 cost function evaluations of a traditional
solver, can outperform the the conventional solver used
for training. To facilitate a more detailed analysis Fig. 5
shows the performance of the conventional solvers with
respect to each other and Fig. 6 depicts the dependence of
the relative performance of TN-GEO using the PGGray
encoding with respect to the conventional solver results
used as the training set.

VI. DISCUSSION

Before we take a closer look at the difference between
various solvers, let us note that the 3 smallest cases (2%
noDev, 2.5% noDev, 5% noDev) are so small that all
solvers reached exactly the same minimum (see Figs. 5
and 6), which we verified to be the global minima for
those cases. Hence, to differentiate between the solvers
we use the results of the remaining (larger) state space
cases only.

When considering the performance of the conventional
solvers, SA performs the best across the board. However,
when we additionally remove the cases in which the so-
lution space is not reduced (100% noDev, 100% yesDev),
GA2 becomes the best solver, closely followed by PT.
Excluding these cases from our conclusions is justified as
these cases are not used in practical applications and are
apparent outliers.

The issue of TN-GEO performance is more compli-
cated. Firstly, the encoding of the states plays a signif-
icant role. The PGGray encoding is the clear best, as
demonstrated in Fig. 4. When considering only this best
encoding, and again disregarding the non-reduced cases,
we can see in Fig. 6 that TN-GEO trained on the data ob-
tained from GA1 performs best of all TN-GEO variants.
Given the relatively poor results of GA1 with respect to
the best conventional solvers, it becomes apparent that
the quality of a generated training set is not directly cor-
related with the performance of the conventional solver.

basic encoding

GAU GA2 GAL

SA

2% 2.5% 5% 1.5% 100% 2% 2.5% 5% 100%
noDev noDev noDev yesDev noDev yesDev yesDev yesDev yesDev

Gray encoding

. - . 00064

GAU GA2 GAl
o o (=]
=l (=] o
(=) (S} (=}

SA
(<]
[S]
o

I~ o)

- . - ...

2% 2.5% 5% 1.5% 100% 2% 2.5% 5% 100%
noDev noDev noDev yesDev noDev yesDev yesDev yesDev yesDev

PGGray encoding

@Illl=

GAl
o
o
(=}

g (0] (o] 0 0.063 0.025 0.015

GAU
o
=l
(=)

SA
o
S
o

2% 2.5% 5% 1.5% 100% 2% 2.5% 5% 100%
noDev noDev noDev yesDev noDev yesDev yesDev yesDev yesDev

) 0

FIG. 4. Performance of TN-GEO in 3-body formulation. This
figure contains one heatmap for each state encoding, each
depicting the difference between the lowest cost found by a
conventional solver (one of GA1, GA2, GAU, SA or PT) after
300 independent runs, and the lowest cost found by TN-GEO
boosting the same conventional solver for the same 300 runs,
in different problem configurations (with/without deviation
and different margins). The difference is positive (green cells)
when the best cost found by TN-GEO is strictly smaller than
the best cost found by the conventional solver, zero (blue
cells) when they tie in their best run, and negative (red cells)
when TN-GEO could not achieve the lowest cost found by the
conventional solver. For each problem configuration, there is
(at least one) cell with a circle/hexagon indicating that either
the corresponding conventional solver or TN-GEO boosting
that conventional solver is the worst/best solver among all of
the considered solvers. In the event of a tie, multiple circles
and hexagons appear.

2% 2.5% 5% 15% 100% 2% 2.5% 5% 100%
noDev noDev noDev yesDev noDev yesDev yesDev yesDev yesDev

FIG. 5. Relative performance of the conventional solvers.
Each cell in the grid gives the difference between the mini-
mum achieved by the best conventional solver and the mini-
mum achieved by the conventional solver on the left axis. The
overlaid heatmap allows for quick comparison of these values
with green indicating that the solver performed nearly or ex-
actly as well as the best solver.

-2.00

2% 2.5% 5% 1.5% 100% 2% 25% 5% 100%
noDev noDev noDev yesDev noDev yesDev yesDev yesDev yesDev

FIG. 6. Relative performance of TN-GEO trained with data
obtained from the conventional solvers. Each cell in the grid
shows the difference between the minimum achieved by the
best TN-GEO solver and the minimum achieved by TN-GEO
boosting the solver on the left axis. This is distinct from
Fig. 5 which only compares the conventional solvers with the
best conventional solver.

VII. SUMMARY

We investigated the utility of quantum-inspired, gen-
erator enhanced optimization methods in a realistic use-
case: an instance of a BMW production planning prob-
lem. Through this comparison we found that problem
representation plays a significant role, with parameter
groupings based on known correlations allowing for lower
minima to be achieved by all solvers more quickly. In
addition, we found that problem-motivated encoding of
the assembly line parameters leads to greatly improved
results as compared to naive representations. Combin-
ing these two techniques, we show that quantum-inspired
generative model based solvers tie or improve upon the
tested conventional optimization methods in a majority
of the tested cases, particularly when used in intermedi-
ate solution space sizes. Based on this comparison, we
conclude that TN-GEO ties or outperforms respective
tested conventional optimization methods in 31 out of 45
tested cases, demonstrating the power of these optimiza-
tion methods in industrially-relevant settings.

VIII. STATEMENT ON DATA AVAILABILITY

All data wused in this paper is publicly avail-
able at https://github.com/zapatacomputing/
TN-GEO-car-plant-optimization.

IX. ACKNOWLEDGEMENTS

The authors would like to thank the Zapata Quantum
Machine Learning team for their helpful insight into the
data analysis and feedback on the manuscript, in par-
ticular A. Perdomo-Ortiz and M. Mauri. This work was
funded in part by the NTT Phi Laboratory and by BMW
and Zapata Computing through the Quantum Science
and Engineering Consortium (QSEC) at the MIT Cen-
ter for Quantum Engineering (CQE). The authors have
declared that no competing interests exist.

[1] Jann Michael Weinand, Kenneth Sorensen, Pablo
San Segundo, Max Kleinebrahm, and Rus-
sell McKenna, “Research trends in combina-
torial optimization,” International ~ Transactions

in Operational Research 29, 667-705 (2022),

https://onlinelibrary.wiley.com/doi/pdf/10.1111 /itor.12996.

[2] Ran Cheng, Cheng He, Yaochu Jin, and Xin Yao,
“Model-based evolutionary algorithms: a short survey,”
Complex & Intelligent Systems 4, 283-292 (2018).
Yaochu Jin, M. Olhofer, and B. Sendhoff, “A framework
for evolutionary optimization with approximate fitness
functions,” IEEE Transactions on Evolutionary Compu-
tation 6, 481-494 (2002).

3

[4] Hao Tong, Changwu Huang, Leandro L. Minku, and Xin
Yao, “Surrogate models in evolutionary single-objective
optimization: A new taxonomy and experimental study,”
Information Sciences 562, 414-437 (2021).

Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo,
and Kaisa Miettinen, “Data-driven evolutionary opti-
mization: An overview and case studies,” IEEE Transac-
tions on Evolutionary Computation 23, 442-458 (2019).
[6] Donald R. Jones, Matthias Schonlau, and William J.
Welch, “Efficient global optimization of expensive black-
box functions,” Journal of Global Optimization 13, 455—
492 (1998).

Mark Zlochin and Marco Dorigo, “Model-based search
for combinatorial optimization: A comparative study,” in

5

[7

https://github.com/zapatacomputing/TN-GEO-car-plant-optimization
https://github.com/zapatacomputing/TN-GEO-car-plant-optimization
http://dx.doi.org/ https://doi.org/10.1111/itor.12996
http://dx.doi.org/ https://doi.org/10.1111/itor.12996
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12996
http://dx.doi.org/10.1007/s40747-018-0080-1
http://dx.doi.org/ 10.1109/TEVC.2002.800884
http://dx.doi.org/ 10.1109/TEVC.2002.800884
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.03.002
http://dx.doi.org/10.1109/TEVC.2018.2869001
http://dx.doi.org/10.1109/TEVC.2018.2869001
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147

[10

[11

(16]

[17

19

20

21]

Proceedings of the 7th International Conference on Par-
allel Problem Solving from Nature, PPSN VII (Springer-
Verlag, Berlin, Heidelberg, 2002) p. 651-664.

Reuven Y. Rubinstein and Dirk P. Kroese, The Cross
Entropy Method: A Unified Approach To Combinatorial
Optimization, Monte-Carlo Simulation (Information Sci-
ence and Statistics) (Springer-Verlag, Berlin, Heidelberg,
2004).

Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mat-
tia Fiorentini, “Parameterized quantum circuits as ma-
chine learning models,” Quantum Science and Technol-
ogy 4, 043001 (2019).

William Huggins, Piyush Patil, Bradley Mitchell, K Bir-
gitta Whaley, and E Miles Stoudenmire, “Towards quan-
tum machine learning with tensor networks,” Quantum
Science and Technology 4, 024001 (2019).

Javier Alcazar, Mohammad Ghazi Vakili, Can B.
Kalayci, and Alejandro Perdomo-Ortiz, “GEO: Enhanc-
ing combinatorial optimization with classical and quan-
tum generative models,” (2021).

Javier Lopez-Piqueres, Jing Chen, and Alejandro
Perdomo-Ortiz, “Symmetric tensor networks for gener-
ative modeling and constrained combinatorial optimiza-
tion,” (2022).

Michael L. Wall and Giuseppe D’Aguanno, “Tree-tensor-
network classifiers for machine learning: From quantum
inspired to quantum assisted,” Phys. Rev. A 104, 042408
(2021).

Tianyi Hao, Xuxin Huang, Chunjing Jia, and Cheng
Peng, “A quantum-inspired tensor network algorithm for
constrained combinatorial optimization problems,” Fron-
tiers in Physics 10 (2022), 10.3389/fphy.2022.906590.
Vithya Ganesan, M. Sobhana, G. Anuradha, Pachipala
Yellamma, O. Rama Devi, Kolla Bhanu Prakash, and
J. Naren, “Quantum inspired meta-heuristic approach for
optimization of genetic algorithm,” Computers & Elec-
trical Engineering 94, 107356 (2021).

Florian Arnold and Kenneth Sorensen, “What makes a
vrp solution good? the generation of problem-specific
knowledge for heuristics,” Comput. Oper. Res. 106, 280—
288 (2018).

Tirtharaj Dash, Ashwin Srinivasan, and A. Baskar,
“Inclusion of domain-knowledge into gnns using mode-
directed inverse entailment,” Mach. Learn. 111, 575-623
(2021).

Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and
Ashwin Srinivasan, “A review of some techniques for in-
clusion of domain-knowledge into deep neural networks,”
Scientific Reports 12, 1040 (2022).

Flavien Lucas, Romain Billot, Marc Sevaux, and Ken-
neth Sérensen, “Reducing space search in combinatorial
optimization using machine learning tools,” in Learning
and Intelligent Optimization: 14th International Confer-
ence, LION 1}, Athens, Greece, May 24—28, 2020, Re-
vised Selected Papers (Springer-Verlag, Berlin, Heidel-
berg, 2020) p. 143-150.

Joao Guilherme de Carvalho Costa, Yi Mei, and Mengjie
Zhang, “Guided local search with an adaptive neigh-
bourhood size heuristic for large scale vehicle routing
problems,” Proceedings of the Genetic and Evolutionary
Computation Conference (2022).

Frank Gray, “Pulse code communication,” (U.S. Patent
2 632 058, Mar. 1953).

(22]

23]

(24]

(25]

[26]

27]

28]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Opti-
mization by simulated annealing,” Science 220, 671-680
(1983).

Robert H. Swendsen and Jian-Sheng Wang, “Replica
monte carlo simulation of spin-glasses,” Phys. Rev. Lett.
57, 26072609 (1986).

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan
Zhang, “Unsupervised generative modeling using matrix
product states,” Phys. Rev. X 8, 031012 (2018).

John Holland, Adaptation in Natural and Artificial Sys-
tems (MIT Press, Cambridge, MA, 1992).
Félix-Antoine Fortin, Francois-Michel De Rainville,
Marc-André Gardner Gardner, Marc Parizeau, and
Christian Gagné, “Deap: Evolutionary algorithms made
easy,” J. Mach. Learn. Res. 13, 2171-2175 (2012).

Eyal Wirsansky, Hands-On Genetic Algorithms With
Python (Packt Publishing, 2020).

Ulrich H.E. Hansmann, “Parallel tempering algorithm for
conformational studies of biological molecules,” Chemical
Physics Letters 281, 140-150 (1997).

http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1088/2058-9565/aaea94
http://dx.doi.org/10.1088/2058-9565/aaea94
http://dx.doi.org/10.48550/ARXIV.2101.06250
http://dx.doi.org/10.48550/ARXIV.2101.06250
http://dx.doi.org/10.48550/ARXIV.2101.06250
http://dx.doi.org/10.48550/ARXIV.2211.09121
http://dx.doi.org/10.48550/ARXIV.2211.09121
http://dx.doi.org/10.48550/ARXIV.2211.09121
http://dx.doi.org/10.1103/PhysRevA.104.042408
http://dx.doi.org/10.1103/PhysRevA.104.042408
http://dx.doi.org/10.3389/fphy.2022.906590
http://dx.doi.org/10.3389/fphy.2022.906590
http://dx.doi.org/ https://doi.org/10.1016/j.compeleceng.2021.107356
http://dx.doi.org/ https://doi.org/10.1016/j.compeleceng.2021.107356
http://dx.doi.org/10.1038/s41598-021-04590-0
http://dx.doi.org/10.1007/978-3-030-53552-0_15
http://dx.doi.org/10.1007/978-3-030-53552-0_15
http://dx.doi.org/10.1007/978-3-030-53552-0_15
http://dx.doi.org/10.1007/978-3-030-53552-0_15
https://patents.google.com/patent/US2632058A/en
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/ 10.1103/PhysRevLett.57.2607
http://dx.doi.org/ 10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevX.8.031012
http://dx.doi.org/https://doi.org/10.1016/S0009-2614(97)01198-6
http://dx.doi.org/https://doi.org/10.1016/S0009-2614(97)01198-6

Appendix A: The free-stage approximation

1. Production estimation

In the actual model, the production cost is determined
both by the state of every stage and the inter-stage in-
teractions. In order to simplify the problem, we intro-
duce the free-stage approximation, in which we neglect
the inter-stage interactions. At this level of approxima-
tion, we can decouple the model and consider every stage
separately.

We will start by introducing py ., as the estimated
monthly production of stage n € {1,...,N} being in
the state m € {1,..., M}. This quantity can be readily
calculated by taking the worktime of the stage obtained
from its state, multiplying it by the production rate of
the shops comprising the stage, and summing the results.

Obviously, for every configuration my, mo,...,my
Pmy,ma,...omy < Pmima,...omy =
mln{pl,mpr,mzv .. 7pN,mN}

where Py, ma,....omy A0d Dy ms,....mn 18 the actual and
approximate monthly production, respectively. Addi-
tionally, we can expect that

‘pm177”21“~7"nN — Pmy,ma,...my |

<e€

pm17m2,~-7mN

for a relatively small value of e, although the concrete
value will depend on the specific parameterization of the
model and is difficult to predict accurately. Numerical
experiments suggest the € value for the global minimum
configuration between about 0.01 and 0.025, depending
on the parameterization.

2. Reduction of the solution space

For this reason, it should be sufficient to restrict the
search for the global minimum to the reduced search
space

Di,m;

23

R—{(ml,mg,...,mN)€S|l—5< §1+€)}

using the value of of € estimated above. We note that the
cost of the reduction scales proportionally to the number
of single-stage states, thus avoiding the exponential ex-
plosion.

3. The production-guided cost-optimization
algorithm

The approach presented above can be extended, allow-
ing us to formulate an efficient method of exploring the
solution space, the Production Guided Cost Optimiza-
tion (PGCO) algorithm.

The cost function penalizes not meeting the target pro-
duction, which we have taken advantage of above, as well
as under-utilization of the production stages. Hence, for
the optimal configuration (mq,ma,...,my) we should
expect

bt = ﬁl,ml ~ Z;Q,mg L= ZN)N,mAp

This observation allows us to easily formulate an effi-
cient algorithm for exploring the solution space. Namely,
we construct a forest of single stage-states. First, we pick
as roots IV, first-stage states for which estimated produc-
tion is closest to the target. Then, for each root we pick
Ny, second-stage states for which the estimated produc-
tion is closest to the estimated production of the respec-
tive root. Then we repeat the procedure, analogously
extending every branch of every tree. Finally, we ex-
haustively search for the minimum among the generated
NTNbN_1 states.

The weak side of the approach is calibration, required
to determine values of N, and N, as small as possible,
but at the same time, large enough to ensure the presence
of a global minimum in the spanned subspace.

On the other hand, assuming relatively large values of
N, and Np, PGCO can be considered as a preprocessing
stage, efficiently reducing the search space for a generic
global minimization procedure.

4. Production guided encoding

The GEO optimizer requires all states of the optimized
system to be represented as bitstrings (sequences of bi-
nary digits), In principle, we can just enumerate the
states and represent them as binary numbers, padding
with zeros when necessary. In our case, the simplest
method boils down to representing the state as an N-
digit base-M number and transforming it to base 2. Un-
fortunately, such a mapping may distort the topology of
the solution space, thus making training the generative
model much more difficult.

The first source of such distortion is the standard
representation of non-binary numbers in base 2, which
causes certain neighbouring numbers, like 3 and 4, to be
represented by bit-strings having relatively large Ham-
ming distance to each other. Fortunately, this can be
mitigated by using the Gray encoding.

The other significant factor impacting the effectiveness
of the representation is the original representation of sys-
tem states as N-digit base-M numbers. In this approach
nearest neighbours may have significantly different pro-
duction cost. To alleviate the issue we came up with the
Production-Guided Encoding of the states. In this ap-
proach, we enumerate single-stage states of the first stage
according to the absolute value of the difference between
the estimated production of the first stage and the tar-
get production. This way, we obtain indexing of the first
stage single-stage states, where the lower is the index,

the closer to the target is the production. Then, for ev-
ery single-stage state from the first stage, we enumerate
the second stage single-stage states, ordering them by
how similar their production is to that of the considered
first-stage state. Finally, for every pair of the first and
second stage single-stage states, we enumerate the third
stage single-stage states, ordering them by how similar
is their production to that of the considered first stage
state. This way we dynamically build a three-level forest,
in which values the indices of the branches approximately
represent the deviation from the expected target produc-
tion. Those branch indices are in turn represented by
bit-strings using the Gray encoding.

Appendix B: Traditional solvers

In this work, we used Genetic Algorithms, Simulated
Annealing, and Parallel Tempering solvers both to gener-
ate initial learning data for TN-GEQO and as benchmarks.
All optimization methods were implemented in python
3.8. Below we provide brief description of the specific
implementations we used.

1. Genetic Algorithms

The genetic algorithm is a meta-heuristic algorithm in-
spired by the theory of natural evolution [25]. For imple-
menting the genetic algorithm, we used the DEAP [26]
library equipped with elitism mechanism from Ref. [27].
We initialized the solver with a population of 10 individu-
als. In each iteration, a subset of size 9 of the population
from the previous iteration is selected using tournament
among 3 individuals. Then, a new population of the same
size is generated via mutation (with probability 0.8) of
each individual in the subset and crossover (with proba-
bility 0.8) of consecutive ones. At the end of an iteration,
the best individual observed in all previous iterations is
added to the population. We used three different types of
crossover operations: one-point, two-point, and uniform.
For mutation, one shop (or one stage in 3-body formu-
lation) is chosen uniformly at random, and its state is
updated to a random possible state.

2. Simulated Annealing

For Simulated Annealing (SA), we implement a ver-
sion of the algorithm based on Ref [22]. In our imple-
mentation, starting from an initial state with cost Cj,
the initial temperature Ty is set to 50, and in each it-
eration, the state of one shop (or one stage in 3-body
formulation), chosen uniformly at random, is updated to
a random state with probability

p; = min{1,exp((C;—1 — C;)/Ti—1)}

TN-GEO Tie/Win Vs. Traditional Solver

65
o *

4 A Y
55 - e AN
50 . \
45 —‘ AN

Y

40 1 $--
35 “"

30 T T T T

% Cases

Maximum Bond Dimension

FIG. 7. The percentage of total tested cases (combinations
of margin, rate deviation and traditional optimizer) in which
TN-GEO improves upon the performance of the respective
traditional optimizer. A maximum of cases occurs when a
maximum bond dimension of 6 is used for the TN-GEO ma-
trix product state optimizer.

where C; is the cost of the state at the end of the i-th
iteration. At the end of each iteration, the temperature
is decreased by a factor of 1.2.

3. Parallel Tempering

For Parallel Tempering (PT), we implemented a ver-
sion of the algorithm based on Ref. [28]. PT can be
thought of as an advanced version of Simulated Anneal-
ing, where one considers independent copies of the car
plant’s state, called replicas, each at a different temper-
ature T,.. In each iteration, the state of each replica is
updated according to its temperature, as in the SA al-
gorithm. Then, the state of two neighbouring replicas, r
and r + 1, are swapped with probability

pr = min{1,exp((Cr — Cr41)(Br — Br+1)}

where C). is the cost of the state in r-th replica, and
Br = 1/T,.. In our implementation, we had 5 replicas
with 4 state-updates in each iteration (before each replica
swap), and we used a geometric sequence of evenly spaced
(in log space) numbers between 0.1 and 10 for S, values.

Appendix C: TN-GEO Bond-Dimension

When using TN-GEO, a fixed hyperparameter, the
maximum bond dimension, sets the maximum number
of singular values kept in the matrix product state fac-
torization of correlation tensors. This corresponds to the
level of correlation that can be captured by the model.
Too high a maximum bond dimension is likely to overfit
a given dataset, while too low does not capture relevant
features.

We tested TN-GEO directly on the studied optimiza-
tion problem in order to choose the maximum bond di-

mension that provides best performance. For each bond
dimension, we tabulated the number of cases (tested
combinations of margins, rate deviation and traditional
optimizer) in which the TN-GEO optimizer improves
upon the performance of the respective traditional op-
timizer. We anticipated a “sweet-spot” of performance
would exist across maximum bond dimensions, and found
one at a maximum bond-dimension of 6 singular val-
ues (see Fig. 7) when using 3-body formulation and the
production-guided encoding.

Appendix D: Time Domain Simulation

The time domain simulation of the assembly line was
implemented in python and was a modified form of that
used in BMW manufacturing settings. The simulation
was performed at a half-hour timestep to maintain accu-
racy while minimizing runtime. Over the course of the
optimization 81% to 69% of the runtime was consumed
by this simulation.

10

	Quantum-Inspired Optimization for Industrial Scale Problems
	Abstract
	Introduction
	Problem description and formulations
	Preprocessing
	Search space reduction
	State encoding

	Optimization
	Results
	Discussion
	Summary
	Statement on Data Availability
	Acknowledgements
	References
	The free-stage approximation
	Production estimation
	Reduction of the solution space
	The production-guided cost-optimization algorithm
	Production guided encoding

	Traditional solvers
	Genetic Algorithms
	Simulated Annealing
	Parallel Tempering

	TN-GEO Bond-Dimension
	Time Domain Simulation

