
A Framework for Demonstrating Practical Quantum Advantage: Racing Quantum
against Classical Generative Models

Mohamed Hibat-Allah,1, 2, 3 Marta Mauri,1 Juan Carrasquilla,2, 4, 3 and Alejandro Perdomo-Ortiz1, ∗

1Zapata Computing Canada Inc., 25 Adelaide St East, M5C 3A1, Toronto, ON, Canada
2Vector Institute, MaRS Centre, Toronto, Ontario, Canada M5G 1M1

3Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
4Department of Physics, University of Toronto, Ontario M5S 1A7, Canada

(Dated: March 29, 2023)

Generative modeling has seen a rising interest in both classical and quantum machine learning, and it repre-
sents a promising candidate to obtain a practical quantum advantage in the near term. In this study, we build over
the framework proposed in Gili et al. [1] for evaluating the generalization performance of generative models,
and we establish the first quantitative comparative race towards practical quantum advantage (PQA) between
classical and quantum generative models, namely Quantum Circuit Born Machines (QCBMs), Transformers
(TFs), Recurrent Neural Networks (RNNs), Variational Autoencoders (VAEs), and Wasserstein Generative Ad-
versarial Networks (WGANs). After defining four types of PQAs scenarios, we focus on what we refer to as
potential PQA, aiming to compare quantum models with the best-known classical algorithms for the task at
hand. We let the models race on a well-defined and application-relevant competition setting, where we illustrate
and demonstrate our framework on 20 variables (qubits) generative modeling task. Our results suggest that
QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
Such a feature is highly desirable in a wide range of real-world applications where the available data is scarce.

I. INTRODUCTION

Generative modeling has become more widely popular with
its remarkable success in tasks related to image generation
and text synthesis, as well as machine translation [2–7], mak-
ing this field a promising avenue to demonstrate the power
of quantum computers and to reach the paramount milestone
of practical quantum advantage (PQA) [8]. The most desir-
able feature in any machine learning (ML) model is gener-
alization, and as such, this property should be considered to
assess its performance in search of PQA. However, the def-
inition of this property in the domain of generative model-
ing can be cumbersome, and it is yet an unresolved question
for the case of arbitrary generative tasks [9]. Its definition
can take on different nuances depending on the area of re-
search, such as in computational learning theory [10] or other
practical approaches [11, 12]. Ref. [1] defines an unambigu-
ous framework for generalization on discrete search spaces
for practical tasks. This approach puts all generative models
on an equal footing since it is sample-based and does not re-
quire knowledge of the exact likelihood, therefore making it
a model-agnostic and tractable evaluation framework. This
reference also demonstrates footprints of a quantum-inspired
advantage of Tensor Network Born Machines [13] compared
to Generative Adversarial Networks [14].

Remarkably, there is still a lack of a concrete quantita-
tive comparison between quantum generative models and a
broader class of classical state-of-the-art generative models,
in search of PQA. In particular, quantum circuit Born ma-
chines (QCBMs) [15] have not been compared up-to-date with
other classical generative models in terms of generalization,
although they have been shown recently for their ability to

∗ alejandro@zapatacomputing.com

generalize [16]. In this paper, we aim to bridge this gap
and provide the first numerical comparison, to the best of
our knowledge, between quantum and classical state-of-the-
art generative models in terms of generalization.

In this comparison, these models compete for PQA. For this
‘race’ to be well-defined, it is essential to establish its rules
first. Indeed, a clear-cut definition of PQA is not present in
the relevant literature so far, especially when it comes to chal-
lenging ML applications such as generative modeling, or in
general, to practical ML.

Previous works emphasize either computational quantum
advantage, or settings that are not relevant from a real-world
perspective, or scenarios that use data sets that give an advan-
tage to the quantum model from the start (and also bear no
relevance to a real-world setting) [17–21]. One potential ex-
ception would be the case of Ref. [22], which showed an ad-
vantage for a quantum ML model in a practical setting. How-
ever, besides the unresolved challenge of relying on quantum-
loaded data, it is still unclear if it would be relevant to some
concrete real-world and large-scale applications, although the
authors mention some potential applications in the domain of
quantum sensing.

We acknowledge as well previous works that have at-
tempted or proposed ways to perform model comparisons,
within generative models and beyond. For instance, a recent
work [23] has developed a novel metric for assessing the qual-
ity of variational calculations for different classical and quan-
tum models on an equal footing. Another recent study [24]
proposes a detailed analysis that systematically compares gen-
erative models in terms of the quality of training to provide in-
sights on the advantage of their adoption by quantum comput-
ing practitioners, although without addressing the question of
generalization. In another recent work [25], the authors pro-
pose the generic notion of quantum utility, a measure for quan-
tifying effectiveness and practicality, as an index for PQA,
but this work differs from our study in the sense that PQA

ar
X

iv
:2

30
3.

15
62

6v
1

 [
qu

an
t-

ph
]

 2
7

M
ar

 2
02

3

mailto:alejandro@zapatacomputing.com

2

is defined in a broad perspective as the ability of a quantum
device to be either faster, more accurate or demanding less
energy compared to classical machines with similar charac-
teristics in a certain task of interest. Others have emphasized
quantum simulation as one of the prominent opportunities for
PQA [26]. In our paper, we share the long-term goal of iden-
tifying practical use cases for which quantum computing has
the potential to bring an advantage. However, our work is fo-
cused on generative models and their generalization capabili-
ties, which is the gold standard to measure the performance of
generative ML models in real-world use cases.

In summary, the goal of this framework and of this study is
to set the stage for a quantitative race between different state-
of-the-art classical and quantum generative models in terms
of generalization in search of PQA, uncovering the strengths
and weaknesses of each model under realistic “race condi-
tions” (see Fig. 1). These competition rules are defined in
advance before the fine-tuning of each model and dictated by
the desired outcome from real-world motivated metrics and
limitations, making our framework application and/or com-
mercially relevant from the start. Hence, we consider this for-
malization to be one of the main contributions of this work.
This focus is motivated by the growing interest of the sci-
entific and business community in showcasing the value of
quantum strategies compared to conventional algorithms, and
provides a common ground for a fair comparison based on
relevant properties.

This paper is structured as follows. In Sec. II, we provide
details about the metrics we use to compare our generative
models. We also contribute to the paramount yet unanswered
question of better defining PQA in the scope of generalization
by formalizing several types of PQA and the specific rules
for the competition. In Sec. III, we show that QCBMs are
competitive with the other classical state-of-the-art generative
models and provide the best compromise for the requirements
of the generalization framework we are adopting. Remark-
ably, we demonstrate that QCBMs perform well in the low-
data regime, which constitutes a bottleneck for deep learning
models [27–29] and which we believe to be a promising set-
ting for PQA.

II. METHODS

A. Generalization Metrics

The evaluation of unsupervised generative models is a chal-
lenging task, especially when one aims to compare different
models in terms of generalization. In this work, we focus on
discrete probability distributions of bitstrings where an unam-
biguous definition of generalization is possible [1]. Here we
start from the framework provided in Ref. [1] that puts dif-
ferent generative models on an equal footing and allows us
to assess the generalization performances of each generative
model from a practical perspective.

In this framework, we assume that we are given a solution
space S that corresponds to the set of bitstrings that satisfy a
constraint or a set of constraints, such that |S| ≤ 2Nvar where

Nvar is the number of binary variables in a bitstring. A typical
example is the portfolio optimization problem, where there
is a constraint on the number of assets to be included in a
portfolio. Additionally, we assume that we are given a training
dataset Dtrain = {x(1),x(2), . . . ,x(T)}, where T = ε|S| and
ε is a tunable parameter that controls the size of the training
dataset such that 0 < ε ≤ 1.

The metrics provided in Ref. [1] allow probing different
features of generalization. Notably, there are three main pil-
lars of generalization: (1) pre-generalization, (2) validity-
based generalization, and (3) quality-based generalization. In
the main text, we focus on quality-based generalization and
provide details about pre-generalization and validity-based
generalization in App. B.

In typical real-world applications, it is desirable to generate
high-quality samples that have a low cost c compared to what
has been seen in the training dataset. In the quality-based gen-
eralization framework, we can define the minimum value as:

MV = min
x∈Gsol

c(x),

which corresponds to the lowest cost in a given set of un-
seen and valid queries Gsol, which we obtain after generating
a set of queries G = {x(1),x(2), . . . ,x(Q)} from a generative
model of interest. In our terminology, a sample x is valid if
x ∈ S and it is considered unseen if x /∈ Dtrain.

To avoid the chance effect of using the minimum, we can
average over different random seeds. We can also define the
utility that circumvents the use of the minimum through:

U = 〈c(x)〉x∈P5
,

where P5 corresponds to the set of the 5% lowest-cost samples
obtained from Gsol. The averaging effect allows us to ensure
that a low cost was not obtained by chance.

In quality-based generalization, it is also valuable to have a
diverse set of samples that have high quality. To quantify this
desirable feature, we define the quality coverage as

Cq =
|gsol(c < minx∈Dtrain c(x))|

Q
,

where gsol(c < minx∈Dtrain c(x)) corresponds to the set of
unique valid and unseen samples that have a lower cost com-
pared to the minimal cost in the training data. The choice
of the values of the number of queries Q depends on the
tracks/rules of comparison presented in Sec. II B.

B. Defining practical quantum advantage

In this work, we refer to practical quantum advantage
(PQA) as the ability of a quantum system to perform a use-
ful task - where ‘useful’ can refer to a scientific, industrial, or
societal use - with performance that is faster or better than
what is enabled by any existing classical system [25, 30].
We highlight that this concept differs from the computational
quantum advantage notion (originally introduced as quantum

3

FIG. 1. The practical quantum advantage (PQA) race: a sports analogy. In panel (a), each runner (generative model) is characterized
by (some of) its strengths and weaknesses, namely: training efficiency, sampling efficiency, and expressive power. Note that the power bars
are indicative, and that is far from trivial to determine, but some insights can be obtained from intuition from the theoretical characterization
of some of the models, e.g., via computational quantum advantage papers, or known properties or highlights for each model. A complete
characterization of the runner can be used to identify the odds-on favorite, independent of the specific race context. In panel (b), the different
runners are embedded into a context (i.e., ‘the real-world application setting’) represented as a concrete instance of a hurdles race. They all run
the same race, but they see the hurdles differently according to their strengths and weaknesses. The runners can compete on different tracks, for
instance, on shorter or longer tracks. For the PQA race to be well defined, it is necessary to clearly state what track is taken under examination.
In this study, we propose two tracks, motivated by the limitation of sampling or cost evaluation budget. Once the track is selected, we can
evaluate runners using different criteria: application-driven metrics need to be defined to fully characterize the race. Our evaluation criterion
is the quality-based generalization, with appropriate metrics defined in Sec. II A (see also Fig. 2 for further specific details).

supremacy), which refers instead to the capability of quan-
tum machines to outperform classical computers, providing a
speedup in solving a given task, which would otherwise be
classically unsolvable, even using the best classical machine
and algorithm [18, 20, 22, 31]. While the latter definition is fo-
cused on provable speedup, the former practical notion aims at
showing an advantage, either temporal or qualitative (or both),
in the context of a real-world task.

In computational quantum complexity, demonstrating a
quantum advantage often boils down to proving a theoretical
result that rules out a possibility for any classical algorithm
to outperform a certain classical algorithm. PQA can be de-
fined differently based on the practical aspects of a problem
of interest and the availability of classical algorithms for the
specific task at hand. Here we take inspiration from Ref. [32],
to define four different types of PQA.

The first version, which we refer to as provable PQA
(PrPQA) has the ultimate goal of demonstrating the superi-
ority of a quantum algorithm with respect to the best classical
algorithm, where the proof is backed up by complexity the-
ory arguments. One example of such a milestone would be to
extend the quantum supremacy experiment [19, 33] to prac-
tical and commercially relevant use cases. Most likely, this
scenario will require fault-tolerant quantum devices and a key

practical setting is still missing for ML use cases. Examples
of this would be to show a realization of Shor’s algorithm at
scale, although backed to some extent by complexity theory
arguments. Even in that case, it is not proven that a polyno-
mial classical algorithm exists. To the best of our knowledge,
the equivalent of Shor’s algorithm in the context of real-world
ML tasks, i.e., useful enough to be included in the definition
of provable PQA provided above, is still missing. Since we
do not yet have either the theoretical or the hardware capabil-
ities for such an ambitious goal, we focus here on the follow-
ing three classes, which might be more reachable with near-
and medium-term quantum devices. We define robust PQA
(RPQA) as a practical advantage of a quantum algorithm com-
pared to the best available classical algorithms. An RPQA can
be short-lived when a better classical algorithm is potentially
developed after an RPQA has been established.

However, on some occasions, there is no clear consensus
about the status of the best available classical algorithm as
it depends on each scientific community. To go around that,
we can conduct a comparison with a state-of-the-art classi-
cal algorithm or a set of classical algorithms. If there is a
quantum advantage in this case, we can refer to it as poten-
tial PQA (PPQA). Within this scenario, a genuine attempt to
compare against the best-known classical algorithms has to be

4

conducted with the possibility that a PPQA is short-lived with
the development or discovery of more powerful and advanced
classical algorithms. A weaker scenario corresponds to the
case where we promote a classical algorithm to its quantum
counterpart to investigate whether quantum effects are useful.
A quantum advantage in this scenario is an example of limited
PQA (LPQA). A potential case is a comparison between a re-
stricted Boltzmann machine [34] and a quantum Boltzmann
machine [35]. In this study, we are pushing the search for
PQA beyond the LPQA scenario to a PPQA, with the hope to
include a more comprehensive list of the best available classi-
cal models in our comparison in future studies.

A significant difference between our definitions and the
types of quantum speedup provided in Ref. [32] is that, for
the PQA case, we do not require a scaling advantage as a func-
tion of the problem size. The main reason is that industry or
application-relevant problems rarely vary in size, and some
of them have a very well-defined unique size. For instance,
the problem of portfolio optimization is usually defined over
a specific asset universe of fixed size, such as the S & P 500
market index, which involves an optimization over N = 500
variables. As long as we have a quantum algorithm that per-
forms better than any of the available classical solutions at the
right problem size and under the exact real-world conditions,
this is already of commercial value and qualifies for PQA.

In this study, we consider different generative models and
let them compete for PPQA, and for this ‘race’ to be well-
defined, it is essential to establish its rules first. When search-
ing for any of the variants of PQA in generative modeling,
we argue that generalization, as defined and equipped with
quantitative metrics in Ref. [1], is an essential evaluation crite-
rion that should be used to establish whether quantum-circuit-
based or quantum-inspired models have a better performance
over classical ones. A fair assessment of generative models’
performance consists in measuring their ability to generate
novel high-scoring solutions for a given task of interest.

To illustrate our approach, we propose a simple sports anal-
ogy. Let us consider a hurdles race, where different runners
are competing against each other. Each generative model can
thus be seen as a runner in such a race. Each contender has
their strengths and weaknesses, which make them see hur-
dles differently, and which can be quantitatively analyzed and
gathered to produce a full characterization of their potential
performance in the race (see Fig. 1(a)). Thus, one can aim
to investigate relevant model features and determine whether
they constitute a strength for the model under examination.
For instance, when analyzing a quantum model, one could
consider its expressive power as a strength, and its training
efficiency as a weakness, and vice versa for a classical model
(at least as a first-order approximation). One possibility to get
a more complete intuition of this characterization is to lever-
age the results from the computational quantum advantage
studies on synthetic datasets.

From a full characterization of all the runners, one can es-
tablish the odds-on favorite to win the race, i.e., the fastest
contender. However, hurdles races take place in a specific
concrete context, for instance, with given wind and track sur-
face conditions, which affect the competition outcome signif-

icantly (see Fig. 1(b)). The PQA approach takes this concrete
context into account when evaluating the contenders, who are
analyzed not only ‘in principle’ but also embedded in a spe-
cific context. For example, the track field’s length is crucial
for the evaluation since different runners can perform differ-
ently if the ‘rules of the game’ are modified. The conditions
of the race affect the runners’ performance, which is equiva-
lent to say that generative models are affected by factors such
as the type and size of the dataset, the ground truth distribu-
tion to be learned, etc. Each instance of a generative modeling
task is unique, just as the conditions for every day of the com-
petitions could be unique. As such, the tracks and the race
conditions must be specified before the competition happens,
to clarify the precise setting where the search for PQA (or, in
our study, for PPQA) takes place.

Lastly, we argue that, when evaluating performance in a
concrete instance of a race on a given track, the measure of
success for an athlete might not necessarily be attributed to the
maximum speed. For instance, what matters to win a race can
be the highest speed reached throughout the race, the optimal
trajectory, the best technical execution of jumps, etc. Outside
the analogy, for a practical implementation of a task, other
factors than the speedup are likely needed to be taken into
account to judge if quantum advantage has occurred. Quality-
based generalization is one of these playgrounds. Although
validity-based generalization is also interesting in many use
cases, we focus on quality-based generalization. The latter
is particularly relevant when considering combinatorial opti-
mization problems, as suggested by the generative enhanced
optimization (GEO) framework [36]. This reference intro-
duces a connection between generative models and optimiza-
tion and we take inspiration from this, which is in and of it-
self a new perspective on a family of commercially valuable
use cases for generative models beyond large language mod-
els and image generation, but that is not fully appreciated yet
by the ML community. Remarkably, quality-based general-
ization turns out to be paramount when the generative model-
ing task under examination is linked to an optimization prob-
lem or whenever a suitable cost/score map can be associated
with the samples. It is thus desirable to learn to generate so-
lutions with the lowest possible cost, at least lower (i.e., of
better quality) compared to the available costs in a training
dataset. The utility, the minimum value, and the quality cover-
age have been introduced precisely to quantify this capability.
However, these metrics can be computed in different ways ac-
cording to the main features of a specific use case, i.e., based
on the track field defining the rules of the game. In Sec. II C,
we propose two distinct ‘track fields’ that give us two differ-
ent lenses, according to which we conduct a comparison of
generative models toward PPQA in an optimization context
that takes the resource bottlenecks of the specific use case into
consideration.

C. Competition details

In our study, we compare several quantum and state-of-the-
art classical generative models. On the quantum side, we use

5

FIG. 2. An illustration of the scheme used for training and assessing the quality-based generalization of our generative models. Given
the training dataset with size |Dtrain| = ε|S|, sampled from the Evens distribution where |S| = 2Nvar−1, we choose different generative models,
and select the track we want to compare them on (i.e., select the “rules of the game” used to probe the generative models). We then train and
fine-tune them using the chosen dataset. After this step, we estimate the quality-based metrics Cq , MV , and U using the selected track, T1
or T2, to assess the quality of the queries generated by each model. In the first track T1, we use Q = 104 queries to estimate our metrics,
whereas, for the second track T2, we require Qu = 102 unique and valid samples at most to compute our metrics. We also choose different
values of the data portion ε to investigate its influence on the generalization of each generative model. For a fair comparison, we use the same
training budget Nepochs = 1000. Additionally, we use Nseeds = 10 different initializations for each generative model to obtain error bars on
metrics.

quantum circuit Born machines (QCBMs) [15] that are trained
with a gradient-free optimization technique. On the classical
side, we use Recurrent Neural Networks (RNN) [37], Trans-
formers (TF) [3], Variational Autoencoders (VAE) [38], and
Wasserstein Generative Adversarial Networks (WGAN) [14].
More details about these models and their characteristics
along with their hyperparameters are explained in App. A.

As a test bed, and to illustrate a concrete realization of our
framework, we choose a re-weighted version of the Evens
(also known as parity) distribution where each bitstring with a
non-zero probability has an even number of ones [16]. In this
case, the size of the solution space, for Nvar binary variable,
is given by |S| = 2Nvar−1. Furthermore, we choose a syn-
thetic cost, called the negative separation cost c [16], which
is defined as the negative of the largest separation between
two 1 in a bitstring, i.e., c(x) = −(z + 1), where z is the
largest number of consecutive zeros in the bitstring x. For
instance, c(‘11100011’) = −4, c(‘10110011’) = −3, and
c(‘11111111’) = −1.

Given this cost function, we can define our re-weighted
training distribution Ptrain over the training data, such that:

Ptrain(x) =
exp(−βc(x))∑

y∈Dtrain
exp(−βc(y))

, (1)

with inverse temperature β ≡ β̂/2, where β̂ is defined as
the standard deviation of the scores c in the training set. If
a data point x /∈ Dtrain, then we assign Ptrain(x) = 0. The
re-weighting procedure applied to the training data encour-
ages our trained models to generate samples with low costs,
with the hope that we sample unseen configurations that have
a lower cost than the costs seen in the training set [36]. To
achieve the latter, it is crucial that the KL divergence between
the generative model distribution and the training distribution

does not tend to zero during the training to avoid memoriz-
ing the training data [16]. It is important to note that it is not
mandatory to apply the re-weighting of the samples as part
of the generative modeling task. However, the re-weighting
procedure in Eq. 1 has been shown to help in finding high
quality samples [1, 16, 36, 39]. Since all the models will be
evaluated in their capabilities to generate low-cost and diverse
samples, as dictated by the evaluation criteria Cq , MV , and
U , we used the re-weighted dataset to train all the generative
models studied here. In reality, the bare training set consists of
T data points with their respective cost values c and any other
transformation could be applied to facilitate the generation of
high-quality samples.

In our simulations, we choose Nvar = 20 as the size of each
bitstring, and we train our generative models for two train-
ing set sizes corresponding to ε = 0.001 and ε = 0.01 (see
Fig. 2). We choose the training data for the two different ep-
silons, such that we have the same minimum cost of −12 for
the two datasets. The purpose of this constraint is to rule out
the effect of the minimum seen cost in our experiments. We
have selected these small epsilon values to probe the model’s
capabilities to successfully train and generalize in this scarce-
data regime.

We focus our attention on evaluating quality-based gener-
alization for the aforementioned generative models (the ‘run-
ners’) using two different competition rules (the ‘tracks’).
These two tracks described next are motivated, respectively,
by the sampling budget and the difficulty of evaluating a cost
function, which are common bottlenecks affecting real-world
tasks. Specifically:

• Track 1 (T1): there is a fixed budget of queriesQ gener-
ated by the generative model to compute Cq , MV and
U for the purpose of establishing the most advantageous

6

models. This criterion is appropriate in the case where
it is cheap to compute the cost associated with samples
while only having access to a limited sampling budget.
For instance, a definition of PPQA based on T1 can be
used in the case of generative models requiring expen-
sive resources for sampling, such as QCBMs executed
on real-world quantum computers. Here, one aims to
reduce the number of measurements as much as pos-
sible while still being able to see an advantage in the
quality of the generated solutions.

• Track 2 (T2): there is a fixed budget Qu of unique, un-
seen and valid samples to compute the quality cover-
age, the utility and the minimum value. This approach
implies the ability of sampling from the trained mod-
els repeatedly to get up to Qu unique, unseen and valid
queries. Note that some models might never get to the
target Qu, for instance, if they suffer from mode col-
lapse. In this case, the metrics can be computed using
the reached Q̃u. This track is motivated by a class of
optimization problems where the cost evaluation is ex-
pensive. Examples of such scenarios include molecule
design and drug discovery that involve clinical trials. In
these settings, the cost function is expensive to com-
pute. This track is aimed to provide a proxy reflecting
these real-world use cases. In this case, one aims to
avoid excessive evaluations of the cost function, i.e., for
repeated samples.

Regarding the sampling budget, we use Q = 104 configu-
rations to estimate our quality metrics for track T1. From the
perspective of track T2, we sample until we obtain Qu = 102

unique configurations that are used to compute our quality-
based metrics1. Our metrics are averaged over 10 random
seeds for each model while keeping the same data for each
portion ε. For a fair comparison between the generative mod-
els, we conduct a hyperparameters grid search using Op-
tuna [40], and we extract the best generative model that allows
obtaining the lowest utility after 100 training steps. Note that,
in order to carry out the hyperparameters tuning process, one
could also utilize MV , Cq , or any appropriate combination of
the three metrics. Additionally, as a fair training budget, we
train all our generative models for Nepochs = 1000 steps. We
compute our quality-based generalization metrics for tracks
T1 and T2 after each 100 training steps. We do not include
this sampling cost in the evaluation budget (Q or Qu), as in
this study we are not focusing on the training efficiency of
these models, so we allow potentially unlimited resources for
the training process. However, for a more realistic setting,
the sampling budget could be customized to keep the train-
ing requirements into account. For clarity, Fig. 2 provides a
schematic representation of our methods. The hyperparame-
ters of each architecture and the parameters count are detailed
in Tab. I.

1 We checked how many samples batches are needed, and we observed that
Q = 104 is enough to extract Qu = 102 unique configurations for all the
generative models in our study.

III. RESULTS AND DISCUSSION

In this section, we show the generalization results of the
different generative models for the two levels of data avail-
ability, ε = 0.01, 0.001, and for the two different tracks, T1
and T2. We start our analysis with ε = 0.01 as illustrated
in Fig. 3(a). By looking at the first track T1, and focusing
on the MV results, we observe that the models experience
a quick drop for the first 100 training steps. It is also inter-
esting to see that all the models produce samples with a cost
lower than the minimum cost value provided in the training
set samples. Furthermore, we can see that VAEs, WGANs,
and QCBMs converge to the lowest minimum value of −19,
whereas RNNs and TFs jump to higher minimum values with
more training steps. In this case, these two models gradually
overfit the training data and generalize less to the low-cost
sectors. This point highlights the importance of early stop-
ping or monitoring our models during training to obtain their
best performances. The utility (T1) provides a complementary
picture, where we observe the VAE providing the lowest util-
ity throughout training, followed by the QCBM and then by
the other generative models. This ranking highlights the value
of QCBMs compared to the other classical generative mod-
els. One interesting feature of QCBMs compared to the other
models is the monotonic decrease of the utility in addition to
its competitive diversity of samples, as illustrated by the qual-
ity coverage (T1). The quality coverage also shows the ability
of QCBMs, in addition to VAEs and WGANs, to generate a
diverse pool of unseen solutions with a lower cost compared
to the costs shown in the training data. From the point of view
of the second track T2, we observe that the WGAN has the
best performance in terms of the three metrics. Additionally,
all the models are still generalizing to configurations with a
lower cost compared to what was seen in the training data. A
complementary picture of the best quality metrics throughout
training is provided in Fig. 4(a) for clearer visibility of the
ranking of generative models in our race.

We now focus our attention on the results obtained for the
degree of data availability corresponding to ε = 0.001 as il-
lustrated in Fig. 3(b). We again observe that all the models are
generalizing to unseen configurations with a lower cost than
the minimum cost seen in the training data. Remarkably, for
T1, we highlight that the QCBM provides the lowest utility
compared to the other models while maintaining a compet-
itive minimum value and diversity of high-quality solutions.
For the second track, T2, we observe that the QCBM is com-
petitive with the VAE while providing the best quality cover-
age Cq . This point is clearer when analyzing and comparing
the best quality-based metrics values in Fig. 4(b).

Overall, QCBMs provide the best quality-based generaliza-
tion performances compared to the other generative models in
the low-data regime with the limited sampling budget, i.e., for
ε = 0.001 and T1 with a sampling budget ofQ = 104 queries.
This efficiency in the low-data regime is a highly desirable
feature compared to classical generative models, which are
known in real-world settings to be data-hungry [27–29]. It is
worthwhile to note that the used QCBM has the lowest num-

7

FIG. 3. A quality-based generalization comparison between QCBMs, RNNs, TFs, WGANs and VAEs. Here, we plot the quality coverage,
utility, and minimum value for the two tracks, T1 (top row) and T2 (bottom row) for Nvar = 20 binary variable. Additionally, the models
are trained using Nseeds = 10 random seeds, and the outcomes of the metrics are averaged over these seeds with error bars estimated as one
standard deviation, which can be computed for each metric as

√
Variance/Nseeds. Panel (a) corresponds to ε = 0.01, hence to a size of the

training dataset of 5242. Here the VAE provides the best overall performance for T1 whereas the WGAN is superior compared to the other
models for T2. Panel (b) corresponds to ε = 0.001, hence to a smaller size of the training dataset equal to 524. From the T1 point of view, we
observe that the QCBM obtains the lowest utility compared to the other models while having a competitive diversity of high-quality solutions.
From the perspective of T2, QCBMs are competitive with the VAE and ahead of the WGAN, the TF, and the RNN. These results highlight
the efficiency of the QCBMs in the scarce-data regime. Note that the dashed horizontal lines correspond to the minimum cost of −12 in the
training data.

8

FIG. 4. Summary of the best quality-based metrics of QCBMs, RNNs, TFs, VAEs and WGANs where the setup is the same as Fig. 3. In
panel (a), we represent the best quality metrics with ε = 0.01. Here we observe that the VAE has the best performance for track T1, whereas
the WGAN is the best model for track T2. In panel (b), we represent our best results for ε = 0.001. Here we remark that the QCBM has
optimal performances for track T1 and is competitive with the other models on track T2 in terms of MV and U while providing a better Cq .

ber of parameters compared to the other generative models as
outlined in App. A. Although using the parameters count to
compare substantially different generative models is not nec-
essarily a well-founded method (even if widespread), we high-
light that the quantum models are able to achieve results that
are competitive with classical models that have significantly
more parameters, sometimes one to two order(s) of magni-
tude more. Overall, these findings are promising steps toward
identifying scenarios where quantum models can provide a
potential advantage in the scarce data regime. More details
about the best results obtained by our generative models can
be found in App. C.

Finally, we would like to note that QCBMs are also com-
petitive with RNNs and TFs in terms of pre-generalization and
validity-based generalization metrics for both data availabil-
ity settings, ε = 0.001, 0.01, as outlined in App. B. The VAE
and the WGAN tend to sacrifice these aspects of generaliza-
tion compared to quality-based generalization (see App. B).
Remarkably, the QCBM provides the best balance between
quality-based and validity-based generalization.

IV. CONCLUSIONS AND OUTLOOKS

In this paper, we have established a race between classi-
cal and quantum generative models in terms of quality-based
generalization and defined four types of practical quantum ad-
vantage (PQA). Here, we focus on what we referred to as po-
tential PQA (PPQA), which aims to compare quantum models
with the best-known classical algorithms to the best of our ef-
forts and compute capabilities for the specific task at hand. We
have proposed two different competition rules for comparing
different models and defining PPQA. We denote these rules
as tracks based on the race analogy. We have used QCBMs,
RNNs, TFs, VAEs and WGANs to provide a first instance of
this comparison on the two tracks. The first track (T1) re-
lies on assuming a fixed sampling budget at the evaluation
stage while allowing for an arbitrary number of cost function
evaluations. In contrast, the second track (T2) assumes we
only have access to a limited number of cost function evalu-
ations, which is the case for applications where the cost es-
timation is expensive. We also study the impact of the de-
gree of data available to the models for their training. Our
results have demonstrated that QCBMs are the most efficient
in the scarce-data regime and, in particular, in T2. In general,
QCBMs showcase a competitive diversity of solutions com-
pared to the other state-of-the-art generative model in all the

9

tracks and datasets considered here.
It is important to note that the two tracks we chose for this

study are not comprehensive, even though they are well mo-
tivated by plausible real-world scenarios. One could also use
different rules of the game where, for example, the training
data can be updated for each training step, as it is customary in
the generator-enhanced optimization (GEO) framework [36],
or where the overall budget takes into account the number of
samples required during training. The two tracks introduced
here serve the purpose of illustrating the possibilities ahead
from this formal approach, In particular, such an approach
helps to unambiguously specify the criteria for establishing
PQA for generative models in real-world use cases, especially
in the context of generative modeling with the goal of generat-
ing diverse and valuable solutions, which could boost in turn
the solution to combinatorial optimization problems. This
characterization is a long-sought-after milestone by many ap-
plication scientists in the quantum information community,
and we believe this framework can provide valuable insights
when analyzing the suitability of the adoption of quantum
or quantum-inspired models against state-of-the-art classical
ones.

Despite the encouraging results obtained from our
quantum-based models, we foresee a significant space for
potential improvements regarding all the generative models
used in this study and some not explored here. In particular,
one can embed constraints into generative models such as in
U(1)-symmetric tensor networks [39] and U(1)-symmetric

RNNs [41, 42]. Furthermore, including other state-of-the-
art generative models with different variations is vital for
establishing a more comprehensive comparison. Lastly,
the extension of this work to more realistic datasets is also
crucial in the quest to investigate generalization-based PQA.
We hope that our work will encourage more comparisons
with a broader class of generative models and that it will
be diversified to include more criteria for comparison into
account.

ACKNOWLEDGMENTS

We would like to thank Brian Chen for his generous com-
ments and suggestions which were very helpful. We also
acknowledge Javier Lopez-Piqueres, Daniel Varoli, Vladimir
Vargas-Calderón, Brian Dellabetta and Manuel Rudolph
for insightful discussions. We also acknowledge Zofia
Włoczewska for assistance in designing our figures. Our
numerical simulations were performed using OrquestraTM.
M.H acknowledges support from Mitacs through Mitacs Ac-
celerate. J.C. acknowledges support from Natural Sciences
and Engineering Research Council of Canada (NSERC), the
Shared Hierarchical Academic Research Computing Network
(SHARCNET), Compute Canada, and the Canadian Institute
for Advanced Research (CIFAR) AI chair program.

[1] Kaitlin Gili, Marta Mauri, and Alejandro Perdomo-Ortiz,
“Evaluating generalization in classical and quantum generative
models,” arXiv:2201.08770 (2022).

[2] Yann LeCun, Y. Bengio, and Geoffrey Hinton, “Deep learn-
ing,” Nature 521, 436–44 (2015).

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin, “Attention is all you need,” Advances in neural infor-
mation processing systems 30 (2017).

[4] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever,
“Zero-shot text-to-image generation,” in International Confer-
ence on Machine Learning (PMLR, 2021) pp. 8821–8831.

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer, “High-resolution image synthesis
with latent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(2022) pp. 10684–10695.

[6] OpenAI Team, “Chatgpt: Optimizing language models for dia-
logue,” (2022).

[7] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L.
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agar-
wal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe,
“Training language models to follow instructions with human
feedback,” arXiv:2203.02155 (2022).

[8] Alejandro Perdomo-Ortiz, Marcello Benedetti, John Realpe-
Gómez, and Rupak Biswas, “Opportunities and challenges for

quantum-assisted machine learning in near-term quantum com-
puters,” Quantum Science and Technology 3, 030502 (2018).

[9] Ahmed M Alaa, Boris van Breugel, Evgeny Saveliev, and Mi-
haela van der Schaar, “How faithful is your synthetic data?
sample-level metrics for evaluating and auditing generative
models,” arXiv:2102.08921 (2021).

[10] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks 10, 988–999 (1999).

[11] Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song,
Noah Goodman, and Stefano Ermon, “Bias and generalization
in deep generative models: An empirical study,” Advances in
Neural Information Processing Systems 31 (2018).

[12] Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-
Hao Liu, Maksym Korablyov, Michael M. Bronstein, and
Yoshua Bengio, “Evaluating generalization in gflownets for
molecule design,” in ICLR2022 Machine Learning for Drug
Discovery (2022).

[13] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan
Zhang, “Unsupervised generative modeling using matrix prod-
uct states,” PRX 8, 031012 (2018).

[14] Ian Goodfellow, “Nips 2016 tutorial: Generative adversarial
networks,” arXiv:1701.00160 (2016).

[15] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vi-
cente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-
Ortiz, “A generative modeling approach for benchmarking and
training shallow quantum circuits,” npj Quantum Information 5,
45 (2019).

[16] Kaitlin Gili, Mohamed Hibat-Allah, Marta Mauri, Chris Bal-
lance, and Alejandro Perdomo-Ortiz, “Do quantum circuit born

https://arxiv.org/abs/2201.08770
https://www.nature.com/articles/nature14539
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2203.02155
http://dx.doi.org/10.1088/2058-9565/aab859
https://arxiv.org/abs/2102.08921
http://dx.doi.org/10.1109/72.788640
http://dx.doi.org/10.1109/72.788640
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://openreview.net/forum?id=JFSaHKNZ35b
https://openreview.net/forum?id=JFSaHKNZ35b
http://dx.doi.org/10.1103/physrevx.8.031012
https://arxiv.org/abs/1701.00160
https://www.nature.com/articles/s41534-019-0157-8
https://www.nature.com/articles/s41534-019-0157-8

10

machines generalize?” arXiv:2207.13645 (2022).
[17] Vojtěch Havlı́ček, Antonio D. Córcoles, Kristan Temme,

Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and
Jay M. Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature 567, 209–212 (2019).

[18] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan
Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M
Martinis, and Hartmut Neven, “Characterizing quantum
supremacy in near-term devices,” Nature Physics 14, 595–600
(2018).

[19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,
Fernando GSL Brandao, David A Buell, et al., “Quantum
supremacy using a programmable superconducting processor,”
Nature 574, 505–510 (2019).

[20] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh
Vazirani, “On the complexity and verification of quantum ran-
dom circuit sampling,” Nature Physics 15, 159–163 (2019).

[21] Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi.
Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bul-
mer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt,
Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo
Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary
Vernon, Nicolás Quesada, and Jonathan Lavoie, “Quantum
computational advantage with a programmable photonic pro-
cessor,” Nature 606, 75–81 (2022).

[22] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan
Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Bab-
bush, Richard Kueng, John Preskill, and Jarrod R. McClean,
“Quantum advantage in learning from experiments,” Science
376, 1182–1186 (2022).

[23] Dian Wu, Riccardo Rossi, Filippo Vicentini, Nikita As-
trakhantsev, Federico Becca, Xiaodong Cao, Juan Carrasquilla,
Francesco Ferrari, Antoine Georges, Mohamed Hibat-Allah,
et al., “Variational benchmarks for quantum many-body prob-
lems,” arXiv:2302.04919 (2023).

[24] Carlos A Riofrı́o, Oliver Mitevski, Caitlin Jones, Florian Krell-
ner, Aleksandar Vučković, Joseph Doetsch, Johannes Klepsch,
Thomas Ehmer, and Andre Luckow, “A performance char-
acterization of quantum generative models,” arXiv:2301.09363
(2023).

[25] Nils Herrmann, Daanish Arya, Marcus W. Doherty, Angus
Mingare, Jason C. Pillay, Florian Preis, and Stefan Prestel,
“Quantum utility – definition and assessment of a practical
quantum advantage,” arXiv:2303.02138 (2023).

[26] Andrew J Daley, Immanuel Bloch, Christian Kokail, Stuart
Flannigan, Natalie Pearson, Matthias Troyer, and Peter Zoller,
“Practical quantum advantage in quantum simulation,” Nature
607, 667–676 (2022).

[27] Gary Marcus, “Deep learning: A critical appraisal,”
arXiv:1801.00631 (2018).

[28] Ying Zhang and Chen Ling, “A strategy to apply machine learn-
ing to small datasets in materials science,” Npj Computational
Materials 4, 25 (2018).

[29] Austin Tripp, Erik Daxberger, and José Miguel Hernández-
Lobato, “Sample-efficient optimization in the latent space of
deep generative models via weighted retraining,” in Proceed-
ings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS 20 (2020).

[30] Paul Alsing, Phil Battle, Joshua C Bienfang, Tammie Bor-
ders, Tina Brower-Thomas, Lincoln Carr, Fred Chong, Siamak
Dadras, Brian DeMarco, Ivan Deutsch, et al., “Accelerating
progress towards practical quantum advantage: A national sci-
ence foundation project scoping workshop,” arXiv:2210.14757

(2022).
[31] John Preskill, “Quantum computing in the NISQ era and be-

yond,” Quantum 2, 79 (2018).
[32] Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo,

Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A.
Lidar, and Matthias Troyer, “Defining and detecting quantum
speedup,” Science 345, 420–424 (2014).

[33] Xin Liu, Chu Guo, Yong Liu, Yuling Yang, Jiawei Song, Jie
Gao, Zhen Wang, Wenzhao Wu, Dajia Peng, Pengpeng Zhao,
Fang Li, He-Liang Huang, Haohuan Fu, and Dexun Chen, “Re-
defining the quantum supremacy baseline with a new generation
sunway supercomputer,” (2021), arXiv:2111.01066 [quant-ph].

[34] Geoffrey Hinton, “A practical guide to training restricted boltz-
mann machines,” (2012) pp. 599–619, Springer Berlin Heidel-
berg.

[35] Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bo-
hdan Kulchytskyy, and Roger Melko, “Quantum boltzmann
machine,” Physical Review X 8 (2018).

[36] Javier Alcazar, Mohammad Ghazi Vakili, Can B. Kalayci,
and Alejandro Perdomo-Ortiz, “Geo: Enhancing combinato-
rial optimization with classical and quantum generative mod-
els,” arXiv:2101.06250 (2021).

[37] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau,
and Yoshua Bengio, “On the properties of neural machine
translation: Encoder-decoder approaches,” arXiv:1409.1259
(2014).

[38] Jason Tyler Rolfe, “Discrete variational autoencoders,”
arXiv:1609.02200 (2016).

[39] Javier Lopez-Piqueres, Jing Chen, and Alejandro Perdomo-
Ortiz, “Symmetric tensor networks for generative modeling and
constrained combinatorial optimization,” arXiv:2211.09121
(2022).

[40] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta,
and Masanori Koyama, “Optuna: A next-generation hyperpa-
rameter optimization framework,” in Proceedings of the 25rd
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2019).

[41] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward,
Roger G. Melko, and Juan Carrasquilla, “Recurrent neural net-
work wave functions,” Physical Review Research 2 (2020).

[42] Stewart Morawetz, Isaac JS De Vlugt, Juan Carrasquilla, and
Roger G Melko, “U (1)-symmetric recurrent neural networks
for quantum state reconstruction,” Physical Review A 104,
012401 (2021).

[43] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia
Fiorentini, “Parameterized quantum circuits as machine learn-
ing models,” Quantum Science and Technology 4, 043001
(2019).

[44] Nikolaus Hansen, “The cma evolution strategy: A tutorial,”
arXiv:1604.00772 (2016).

[45] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis, “CMA-
ES/pycma on Github,” (2019).

[46] Manuel S. Rudolph, Jacob Miller, Jing Chen, Atithi Acharya,
and Alejandro Perdomo-Ortiz, “Synergy between quantum cir-
cuits and tensor networks: Short-cutting the race to practical
quantum advantage,” arXiv:2208.13673 (2022).

[47] Jin-Guo Liu and Lei Wang, “Differentiable learning of quantum
circuit born machines,” PRA 98, 062324 (2018).

[48] Zachary C. Lipton, John Berkowitz, and Charles Elkan, “A crit-
ical review of recurrent neural networks for sequence learning,”
arXiv:1506.00019 (2015).

[49] Ian Goodfellow Yoshua Bengio and Aaron Courville, “Deep
learning,” MIT Press (2016).

[50] Giovanni S Carmantini, Peter beim Graben, Mathieu

https://arxiv.org/abs/2207.13645
http://dx.doi.org/10.1038/s41586-019-0980-2
https://www.nature.com/articles/s41567-018-0124-x
https://www.nature.com/articles/s41567-018-0124-x
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41567-018-0318-2
http://dx.doi.org/ 10.1038/s41586-022-04725-x
https://www.science.org/doi/abs/10.1126/science.abn7293
https://www.science.org/doi/abs/10.1126/science.abn7293
https://arxiv.org/abs/2302.04919
https://arxiv.org/abs/2301.09363
https://arxiv.org/abs/2301.09363
https://arxiv.org/abs/2303.02138
https://www.nature.com/articles/s41586-022-04940-6
https://www.nature.com/articles/s41586-022-04940-6
https://arxiv.org/abs/1801.00631
https://www.nature.com/articles/s41524-018-0081-z
https://www.nature.com/articles/s41524-018-0081-z
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://arxiv.org/abs/2210.14757
https://arxiv.org/abs/2210.14757
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://dx.doi.org/10.1126/science.1252319
http://arxiv.org/abs/2111.01066
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050
https://arxiv.org/abs/2101.06250
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1609.02200
https://arxiv.org/abs/2211.09121
https://arxiv.org/abs/2211.09121
http://dx.doi.org/ 10.1145/3292500.3330701
http://dx.doi.org/ 10.1145/3292500.3330701
http://dx.doi.org/ 10.1145/3292500.3330701
https://doi.org/10.1103%2Fphysrevresearch.2.023358
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.012401
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.012401
https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5
https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5
https://arxiv.org/abs/1604.00772
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://arxiv.org/abs/2208.13673
http://dx.doi.org/ 10.1103/PhysRevA.98.062324
https://arxiv.org/abs/1506.00019
http://www.deeplearningbook.org

11

Desroches, and Serafim Rodrigues, “Turing computation with
recurrent artificial neural networks,” arXiv:1511.01427 (2015).

[51] Anton Maximilian Schäfer and Hans Georg Zimmermann, “Re-
current neural networks are universal approximators,” in Artifi-
cial Neural Networks – ICANN 2006 (2006) pp. 632–640.

[52] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the
difficulty of training recurrent neural networks,” (2012).

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32 (Curran Associates, Inc.,
2019) pp. 8024–8035.

[54] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv:1412.6980 (2014).

[55] Huitao Shen, “Mutual information scaling and expressive
power of sequence models,” arXiv:1905.04271 (2019).

[56] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli
Celikyilmaz, and Lawrence Carin, “Cyclical annealing
schedule: A simple approach to mitigating kl vanishing,”
arXiv:1903.10145 (2019).

[57] Jonathan T. Barron, “Continuously differentiable exponential
linear units,” arXiv:1704.07483 (2017).

[58] Diederik P Kingma and Max Welling, “Auto-encoding varia-
tional bayes,” arXiv:1312.6114 (2013).

[59] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner, “beta-VAE: Learning basic visual con-
cepts with a constrained variational framework,” in Interna-
tional Conference on Learning Representations (2017).

[60] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio, “Generative adversarial nets,” Advances in
neural information processing systems 27 (2014).

[61] Martin Arjovsky, Soumith Chintala, and Léon Bottou,
“Wasserstein generative adversarial networks,” in International
conference on machine learning (PMLR, 2017) pp. 214–223.

[62] Ankan Dash, Junyi Ye, and Guiling Wang, “A review of gen-
erative adversarial networks (gans) and its applications in a
wide variety of disciplines – from medical to remote sensing,”
arXiv:2110.01442 (2021).

https://arxiv.org/abs/1511.01427
https://link.springer.com/chapter/10.1007/11840817_66
https://link.springer.com/chapter/10.1007/11840817_66
http://dx.doi.org/10.48550/ARXIV.1211.5063
http://dx.doi.org/10.48550/ARXIV.1211.5063
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1905.04271
https://arxiv.org/abs/1903.10145
https://arxiv.org/abs/1704.07483
https://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://arxiv.org/abs/2110.01442

12

Appendix A: Generative models

In this appendix, we briefly introduce the generative models
used in this study. We also summarize their hyperparameters
in Tab. I.

1. Quantum Circuit Born Machines (QCBMs)

Quantum circuit Born machines (QCBMs) are a class of
expressive quantum generative models based on parametrized
quantum circuits (PQCs) [15]. Starting from a fixed initial
qubit configuration |0〉⊗N , we apply a unitary U(θ) on top of
this state. Projective measurements are performed at the end
of the circuit to get configurations that are sampled, according
to Born’s rule, from the squared modulus of the PQC’s wave
function. One can use different topologies that describe the
qubit connectivity to model the unitary U(θ). Our study uses
the line topology, where each qubit is connected to its nearest
neighbors in a 1D chain configuration [15, 43]. More details
can be found in Ref. [16].

To train our QCBM, we compute the KL divergence be-
tween the softmax training distribution Ptrain (see Eq. (1)) and
the QCBM probability distribution PQCBM as

KL(Ptrain||PQCBM) =
∑
x

Ptrain(x) log

(
Ptrain(x)

max(δ, PQCBM(x))

)
,

where δ = 10−8 is a regularization factor to avoid numeri-
cal instabilities. The optimization of the parameters θ is per-
formed using a gradient-free method called CMA-ES opti-
mizer [44, 45] after randomly initializing the parameters of
the PQC. In our simulations, we used 8 layers, which pro-
vided the best utility U compared to 2, 4 and 6 layers with line
topology. For the QCBM and the following classical genera-
tive models, the optimal hyperparameters are obtained with a
grid search with the condition of getting the lowest utility after
100 training iterations.

We have also performed simulations with the all-to-all
topology [15]; however, they lead to sub-optimal perfor-
mances compared to the line topology for trainability reasons
at the scale of our experiments. In Ref. [16], we did not ob-
serve this issue for an all-to-all topology at the scale of 12
qubits. To further improve the trainability of QCBMs, there is
a potential for using pre-training of QCBMs with tensor net-
works as suggested in Ref. [46]. As a final note, since the
exact computation of PQCBM is not tractable for large system
sizes, one could consider the use of sample-based cost func-
tions such as Maximum Mean Discrepancy (MMD) for a large
number of qubits [47]. Extending this study to an experimen-
tal demonstration on currently available quantum devices is
also crucial to evaluate the impact of noise on the model’s
performance.

2. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are unique architec-
tures traditionally used for applications in natural language
processing such as machine translation and speech recogni-
tion [48, 49]. They are known for their ability to simulate Tur-
ing machines [50] and for their capability of being universal
approximators [51]. RNNs take advantage of the probability
chain rule to generate uncorrelated samples autoregressively
as follows:

PRNN(σ1, σ2, . . . , σN) =

PRNN(σ1)PRNN(σ2|σ1) . . . PRNN(σN |σ1, . . . σN−1).
(A1)

Here (σ1, σ2, . . . , σN) is a configuration of N bits where
σi = 0, 1. Each conditional PRNN(σi|σ1, . . . σi−1) is com-
puted using a Softmax layer as:

PRNN(σi|σ<i) = Softmax (Uhi + c) · σi. (A2)

σi is a one-hot encoding of σi and ‘·’ is the dot product opera-
tion. The weights U and the biases c are the parameters of this
Softmax layer. The vector hi is called the memory state with a
tunable size dh, which we call the hidden dimension. For the
simplest (vanilla) RNN, hi is computed using the following
recursion relation:

hi = f(Whi−1 + V σi−1 + b), (A3)

where W , V and b are trainable parameters and f is a non-
linear activation function. Furthermore, σ0,h0 are initialized
to zero. Typically, vanilla RNNs suffer from the vanishing
gradient problem, which makes their training a challenging
task [52]. To mitigate this limitation, more advanced versions
of RNN cells have been devised, namely, the Gated Recurrent
Unit (GRU) [37, 48]. In our experiments, we use the PyTorch
implementation of the GRU unit cell [53].

Similarly to the QCBM, we minimize the KL divergence
between the RNN distribution (A1) and the training distribu-
tion (1) without a regularization factor δ. For the optimiza-
tion, we use Adam optimizer [54]. To find the best hyperpa-
rameters that provided the lowest utility, we have conducted a
grid search with the learning rates η = 10−4, 10−3, 10−2 and
the hidden dimensions dh = 8, 16, 32, 64, 128. We find that
η = 10−3 and dh = 32 are optimal for both the two values of
the training data portion ε.

3. Transformers (TFs)

Transformers (TFs) are attention models that have sparked
exciting advances in natural language processing [3], namely
in applications related to language translation, text summa-
rization, and language modeling. Similarly to the RNN, TFs
can have the autoregressive property, and they have been pro-
posed in the literature as a solution to the vanishing gradient
problem in RNNs [52]. The attention mechanism in TFs al-
lows handling long-range correlations compared to traditional

13

RNNs [3, 55]. TFs can also process long data sequences com-
pared to traditional neural network architectures.

In our simulations, we use the traditional implementation
of TF decoders in Ref. [3] without using a TF encoder in a
similar fashion to the RNN. First, we embed our inputs us-
ing a multilayer perceptron (MLP) with a Leaky ReLU acti-
vation, and then we add positional encoding. Next, we use
a one-layered TF with one attention head. Additionally, the
outputs are passed to a two-layer feed-forward neural net-
work with a ReLU activation in the hidden layer. To re-
duce the search space, the size of the hidden dimension in
the feed-forward neural network is chosen to be the same as
the size of the embedding dimension, which we also denote
as dh [3]. The latter is fine-tuned in the range of possibilities
dh = 8, 16, 32, 64, 128 along with a range of learning rates
η = 10−4, 10−3, 10−2. For the training, we minimize the KL
divergence between the TF probability distribution and the re-
weighted training distribution (1). We find that dh = 64 and
η = 10−2 provided the lowest utilities for both values of the
training data portion ε.

4. Variational Autoencoders (VAEs)

Variational autoencoders (VAEs) are approximate likeli-
hood generative models that can learn to represent and recon-
struct data [14]. Initially, a VAE encoder maps an input data
point to a latent representation z. Next, a VAE decoder uses
the latent representation to reconstruct the original input data
point. Finally, the VAE compares the reconstruction and the
initial input data point and is trained until the reconstruction
error is as small as possible. In this case, the VAE cost func-
tion corresponds to the evidence lower bound (ELBO) of the
negative log-likelihood [56].

In our study, the encoder and the decoder are built as an
MLP with two hidden layers with a CELU (α = 2) acti-
vation [57]. The encoder is followed by two separate MLP
layers for the purpose of implementing the reparametrization
trick [14, 58]. To reduce the search space of hyperparameters,
the size of these hidden layers is taken to be the same as the
size of the latent representation. The latter is chosen from the
range 8, 16, 32, 64, 128. For the optimization, we explore dif-
ferent learning rates η = 10−4, 10−3, 10−2. We also note that
the temperature β was not added to the training of VAEs [59].
After conducting a grid search, we find that a latent dimension
of 128 and a learning rate η = 10−3 are the optimal hyperpa-
rameters.

5. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) are a class of neu-
ral networks that consists of a generator and a discrimina-
tor [14, 60]. The generator is optimized based on a dataset,
while the discriminator is trained to distinguish between real
and generated data points. The two networks are trained to-
gether until reaching Nash equilibrium, where the generator
produces data that is very similar to the original dataset while

the discriminator becomes much better at distinguishing real
from generated data.

In our study, we use Wasserstein GANs (WGAN) [61],
which are a variant of GANs with a loss function called the
Wasserstein loss (which is also known as the Earth Mover’s
distance). For the optimization of the loss function, we use
Adam optimizer. An interesting feature about WGANs is that
they are less susceptible to mode collapse. They can also be
used for a wide range of applications, including audio synthe-
sis, text generation, and image generation, and a wide range
of areas of science [62].

In our numerical implementation, we choose the gen-
erator and discriminator as two feed-forward neural net-
works with two hidden layers with CELU (α = 2) activa-
tion [57]. For simplicity, we choose the size of the gaus-
sian prior to being the same as the width of the hidden lay-
ers. We fine-tune the hyperparameters with a grid search
on the widths 8, 16, 32, 64, 128 and the learning rates η =
10−4, 10−3, 10−2. We find that a prior size of 8 and η = 10−2

are optimal for the data portion ε = 0.01, whereas a prior size
of 128 with η = 10−3 works best for ε = 0.001.

Appendix B: Pre-generalization and validity-based
generalization results

The focus of pre-generalization is to check whether a
generative model can generate samples outside the training
data. This can be done by generating a set of queries G =
{x(1),x(2), . . . ,x(Q)} with size Q to compute the ratio:

E =
|Gnew|
Q

,

where Gnew is the set of unseen (i.e., out-of-training) samples
among the set of generated queries G. This metric is called
exploration, and the larger its value, the more our model of
interest can explore different configurations outside the train-
ing data.

Given a set of constraints, it is also desirable that a gen-
erative model generates queries that satisfy these constraints,
which are typical in combinatorial optimization problems. In
this case, these queries are called valid. We can define the first
validity-based metric, called the generalization rate:

R =
|Gsol|
Q

,

where Gsol is the set of valid and unseen queries. This met-
ric quantifies the likelihood of our generated samples that are
both unseen and valid, and it can be renormalized to 1 [16]. In
this case, we can define the normalized rate as:

R̃ =
R

1− ε
.

Additionally, we can define the generalization fidelity as

F =
|Gsol|
|Gnew|

,

14

Generative model Hyperparameter Value

QCBM

Number of layers 8

Circuit topology Line topology
Optimizer CMA-ES optimizer with σ0 = 0.1

Initialization Random initialization between −π/2 and π/2
Total number of parameters 256

RNN

Architecture GRU
Number of layers 1

Optimizer Adam optimizer
Learning rate 10−3

Number of hidden units 32

Total number of parameters 3456

TF

Number of layers 1

Number of attention heads 1

Embedding dimension size 64

Size of FFNN output 64

Optimizer Adam optimizer
Learning rate 10−3

Total number of parameters 25538

VAE

Prior size 128

Encoder architecture FFNN with CELU (α = 2) activation
Encoder hidden layers width 128

Number of hidden layers of encoder net 2

Decoder architecture FFNN with CELU (α = 2) activation
Decoder hidden layers width 128

Number of hidden layers of decoder net 2

Temperature 1/β 0.0

Optimizer Adam optimizer
Learning rate 10−3

Total number of parameters 87828

WGAN (ε = 0.01)

Prior size 8

Generator architecture FFNN with CELU (α = 2) activation
Generator hidden layers width 8

Number of hidden layers of generator net 2

Discriminator architecture FFNN with CELU (α = 2) activation
Discriminator hidden layers width 8

Number of hidden layers of discriminator net 2

Optimizer Adam optimizer
Gradient regularization 10.0

Learning rate 10−2

Total number of parameters 573

WGAN (ε = 0.001)

Prior size 128

Generator architecture FFNN with CELU (α = 2) activation
Generator hidden layers width 128

Number of hidden layers of generator net 2

Discriminator architecture FFNN with CELU (α = 2) activation
Discriminator hidden layers width 128

Number of hidden layers of discriminator net 2

Optimizer Adam optimizer
Gradient regularization 10.0

Learning rate 10−3

Total number of parameters 54933

TABLE I. Hyperparameters used to obtain the results reported in this study. FFNN stands for a feed-forward neural network. We also report
the total number of parameters for each model, where the QCBM has the lowest number of variational parameters.

15

which quantifies the likelihood of a generative model to pro-
duce valid unseen samples out of the generated unseen sam-
ples, rather than invalid ones. 2.

In some applications [12], it is also important that a genera-
tive model provides a diverse set of unseen and valid samples.
For this reason, we can define a third metric called the gener-
alization coverage defined as:

C =
|gsol|
|S| − T

=
|gsol|

|S|(1− ε)
,

where gsol is the set of unique queries that are both unseen and
valid. This metric allows quantifying the diversity of solutions
as opposed to the fidelity and the rate. The coverage can also
be renormalized to 1 by defining a normalized coverage:

C̃ =
C

1− (1− 1/(|S|(1− ε))Q
≈ |gsol|

Q
,

where the denominator corresponds to the ideal expected
value of the coverage [1] and the approximation holds in the
regime Q � |S|(1 − ε). The latter is typical when we have
a relatively large number of binary variables. We highlight
that it is not necessary to know |S| (or ε) in order to com-
pute the coverage: since we are interested in using these met-
rics to compare models, one can simply utilize coverage ratios
among models thus avoiding the need of having prior knowl-
edge about the size of the solution space. Lastly, we specify
that we only use the first track T1 to compute the validity-
based metrics, since there is no cost involved in the calcula-
tion, which makes the second track T2 not applicable.

In this section, we also present the results from the pre-
generalization and the validity-based generalization metrics
to provide an additional perspective on the results in the main
text. In Fig. 5, we show the exploration E, normalized rate R̃,
the fidelity F and the normalized coverage C̃ for a data por-
tion ε = 0.01 in panel (a) and for ε = 0.001 in panel (b). A
common feature of the results is that QCBMs are competitive
with TFs and RNNs on the validity metrics and superior to
VAEs and WGANs. Besides the quality-based generalization
results in the main text, these observations favor the QCBMs’
ability to provide the best compromise for validity-based and
quality-based generalization compared to the other generative
models. The observation of VAEs being less efficient at this
generalization level could be explained by the mode collapse
that occurs at zero temperature. Using a finite temperature
1/β in future studies could be helpful to mitigate this limita-
tion [59]. We also observe that the WGAN has a similar be-
havior to the VAE, which can also be related to mode-collapse.

Appendix C: Additional quality-based generalization results

In this appendix, we report the best values found by our
generative models throughout the training shown in Fig. 3.
The error bars are computed by averaging over the outcome of
10 different training seeds. For ε = 0.001, we report the best
performances for each metric during the training in Tab. II.

2 This metric is not to confuse with the fidelity measure between two proba- bility distributions or two quantum states.

16

FIG. 5. Validity-based generalization comparison between QCBMs, RNNs, TFs, WGANs and VAEs for a system size Nvar = 20. Here
we plot the exploration E, normalized rate R̃, fidelity F and normalized coverage C̃ against the number of training steps for ε = 0.01 in panel
(a), and for ε = 0.001 in panel (b). The models are trained using Nseeds = 10 random seeds, and the outcomes of the metrics are average over
these seeds with errors bar estimated as the standard deviation, which can be computed for each metric as

√
Var/Nseeds.

T1 Cq MV U
QCBM 7e-4 -19 -17.30(8)
RNN 7e-4 -19 -15.03(13)
TF 6.9(1)e-4 -18.9(1) -16.07(42)

VAE 6.7(1)e-4 -19 -16.46(7)
WGAN 6.4(2)e-4 -19 -15.21(13)

T2 Cq MV U
QCBM 0.04 -16 -14.60(5)
RNN 0.005(2) -11.5(5) -10.94(46)
TF 0.024(4) -14.5(4) 12.98(39)

VAE 0.037(1) -16.2(2) -14.58(7)
WGAN 0.036(1) -16 -14.14(12)

TABLE II. A summary of the best values of quality coverage (Cq), minimum value (MV) and utility (U) for the data portion ε = 0.001 from
Fig. 3 and for the generative models (QCBM, RNN, TF, VAE and WGAN). Values in bold correspond to the best performance among the
different models. Furthermore, the digits in parentheses correspond to the uncertainty over the last digit of the reported numbers. For track T1,
the QCBM is the winner, whereas for track T2, QCBM is competitive with the VAE.

17

T1 Cq MV U
QCBM 7e-4 -19 -18.19(7)
RNN 7e-4 -19 -15.01(12)
TF 6.7(2)e-4 -18.8(2) -16.12(26)

VAE 7e-4 -19 -19
WGAN 7e-4 -19 -17.86(46)

T2 Cq MV U
QCBM 0.038(1) -15.8(1) -14.52(16)
RNN 0.015(2) -13.5(2) -12.78(15)
TF 0.027(5) -14.7(5) -13.74(41)

VAE 0.05 -17 -15.58(5)
WGAN 0.051(2) -17.7(3) -15.96(19)

TABLE III. A report of the numerical values as in Tab. II for the data portion ε = 0.01 reported in Fig. 3. Values in bold correspond to the best
performance among the different models. For track T1, VAE is the winner, whereas, for track T2, WGAN is superior compared to the other
models.

	A Framework for Demonstrating Practical Quantum Advantage: Racing Quantum against Classical Generative Models
	Abstract
	I Introduction
	II Methods
	A Generalization Metrics
	B Defining practical quantum advantage
	C Competition details

	III Results and Discussion
	IV Conclusions and Outlooks
	 Acknowledgments
	 References
	A Generative models
	1 Quantum Circuit Born Machines (QCBMs)
	2 Recurrent Neural Networks (RNNs)
	3 Transformers (TFs)
	4 Variational Autoencoders (VAEs)
	5 Generative Adversarial Networks (GANs)

	B Pre-generalization and validity-based generalization results
	C Additional quality-based generalization results

