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Abstract
Constrained combinatorial optimization problems abound in industry, from portfolio
optimization to logistics. One of the major roadblocks in solving these problems is the presence of
non-trivial hard constraints which limit the valid search space. In some heuristic solvers, these are
typically addressed by introducing certain Lagrange multipliers in the cost function, by relaxing
them in some way, or worse yet, by generating many samples and only keeping valid ones, which
leads to very expensive and inefficient searches. In this work, we encode arbitrary integer-valued
equality constraints of the form A⃗x= b⃗, directly into U(1) symmetric tensor networks (TNs) and
leverage their applicability as quantum-inspired generative models to assist in the search of
solutions to combinatorial optimization problems within the generator-enhanced optimization
framework of Alcazar et al (2021 arXiv:2101.06250). This allows us to exploit the generalization
capabilities of TN generative models while constraining them so that they only output valid
samples. Our constrained TN generative model efficiently captures the constraints by reducing
number of parameters and computational costs. We find that at tasks with constraints given by
arbitrary equalities, symmetric matrix product states outperform their standard unconstrained
counterparts at finding novel and better solutions to combinatorial optimization problems.

1. Introduction

Tensor networks (TNs) have emerged in the past few years as a very powerful tool to address challenging
problems in high-dimensional spaces, such as quantum many-body physics [1], electronic structure of
chemical compounds [2], supervised learning [3], generative modeling [4], anomaly detection [5],
combinatorial optimization [6–8], and privacy leaking [9], to name a few. The reason for their wide
applicability lies in part for their well-understood mathematical structure and well-controlled expressibility.

Just as artificial neural networks (ANNs) are universal approximators of generic distributions [10], TNs
can in principle model any (discrete) distribution with enough computational resources [11]. While ANNs
are inspired by the functioning of the brain (in particular their expressibility determined by the number of
activation functions, mimicking the firing of neurons in the brain), themselves nonlinear functions of their
input, TNs are inspired by quantum mechanics, arguably a theory with richer mathematical structure than
that of ANNs. For instance, the Hilbert space structure of quantum mechanics allows to exploit global
internal symmetries in quantum states through the use of representation theory. This can have important
consequences when we aim to efficiently express probability distributions with redundancies that appear as a
result of such symmetries.

It may appear at first sight that exploiting internal symmetries such as U(1) or SU(2) would bear little
importance in problems outside physics. In this work, we show that by exploiting U(1) symmetry in TN
states it is possible to encode arbitrary integer-valued equalities of the form A⃗x= b⃗ in a probabilistic model,
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extending the family of so-called tensor network Born machine (TNBM) models [4]. Therefore, we refer to
our new family of symmetric quantum-inspired TN generative models as s-TNBMs.

This type of equalities appear in many combinatorial optimization problems with hard constraints, such
as in portfolio optimization, warehouse location, scheduling, transportation, to name a few [12, 13]. Current
state-of-the-art methods at dealing with combinatorial optimization problems with hard-constraints, such as
MIXED-INTEGER LINEAR PROGRAMMING (MILP) solvers [14, 15], simulated annealing solvers [16], or more
recently, graph neural networks (GNNs) [17–19] and fully quantum models such as the Quantum
Approximate Optimization Algorithm (QAOA) [20], suffer from at least one of the following two drawbacks:
they must explicitly break the integrality constraint to then project back to the nearest integer solution (as
done in standard MILP solvers relying on the branch-and-boundmethod [13]), and/or they only work for
cost functions expressed as polynomials in the binary variables, with linear or quadratic being the most
common ones. Here, we focus on a recent proposal, the generator-enhanced optimization (GEO)
framework [21], which bypasses both of these limitations.

GEO solvers leverage classical or quantum generative models to assist the solution of combinatorial
optimization problems, by learning the correlations from observations (i.e. bitstrings and their
corresponding costs) and proposing new bitstring solution candidates which resemble those in the lowest
cost sector. This is done by reweighting the seen information, which is set as the dataset to train the
generative model. This reweighting helps to give more importance to those samples in the training dataset
with the lowest cost (see section 2 for more details). It was shown in [21] the power of quantum-inspired
generative models based on TNBMs within GEO, matching the performance of state-of-the-art
metaheuristics tailored in the last 30 years for a specific variant of the portfolio optimization problem. These
remarkable results were obtained without imposing any bias in the TNBMmodel to enforce the cardinality
constrains (i.e. fixed desired number k of assets in the portfolio out of N) of the combinatorial problems.

In this work, we exploit the rather simple structure of TNs, in particular their linearity and local
connectivity, to encode arbitrary equality constraints, cardinality being a specific realization of these, for the
purpose of both generative modeling and combinatorial optimization. We do so by mapping the problem of
finding solutions satisfying the constraints A⃗x= b⃗ to that of finding the set of quantum numbers (QNs)
appearing in symmetric TNs. In this context, QNs effectively correspond to labels of different irreducible
representations, in this case of U(1), defined on each local Hilbert space where each tensor is supported.

For equality constraints with high-degree of symmetry, where the coefficients in matrix A have low
variance, we find that symmetric TNs correspond to an efficient encoding of the valid space. For a subset of
these, such as cardinality type constraints appearing in problems such as portfolio optimization [21], one
can write down explicitly the TN ansatz for the entire valid space, which can be used as an initial ansatz for
finding optimal solutions. For arbitrary integer-valued equalities finding the solution space is likely
#P-complete (since its associated decision problem, (0,1)-INTEGER PROGRAMMING, is already NP-complete
[22]), but we provide a novel message-passing algorithm with QNs acting asmessages, that is able to encode a
large fraction of these solutions within a few QNs, thereby allowing to generate many unseen solutions
satisfying A⃗x= b⃗ when given access to some (valid) training data, even when the entries of A and b⃗ are
random integers. At the same time, by exploiting the dimensionality of each QN, the resulting TN ansatz is
able to capture not only the constraints efficiently, but also biases in the dataset, therefore favoring certain
solutions over others.

Moreover, by constraining the TN so as to only sample within the valid subspace, we guarantee
computational savings, in both memory usage by exploiting block-sparsity of the tensors as well as
computational time by guaranteeing that only the needed tensor components get updated. Beyond the ability
to impose arbitrary equality constraints, TNs enjoy sophisticated optimization algorithms, such as the
density matrix renormalization group (DMRG) algorithm [23, 24] for matrix product states (MPSs), as well
as perfect sampling [25] (which avoid long autocorrelation times typical of Monte Carlo based sampling
algorithms).

While we envision other uses of constrained TNs as efficient representations of constrained datasets in
various contexts, we find that some of its most crucial advantages are captured within the GEO framework of
[21]. This is because GEO exploits the presence of existing training data to generate new and better solutions
to combinatorial optimization problems by capturing biases in the training set (corresponding to bitstrings
of different costs), which our constrained TN approach is capable of incorporating when given data subject
to equality constraints.

The structure of the paper is as follows. In section 2. we state the problem we are interested in, namely
combinatorial optimization problems subject to equality constraints, and describe our approach to the
problem using a generative model based on TNs. In section 3 we give a brief introduction to symmetric TNs
placing emphasis on symmetric MPS, a special TN structure which will be used in our numerical
experiments. In section 4 we explain the main encoding and generative algorithms. In section 5 we present
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various results showcasing the types of canonical problems symmetric MPS can be applied to and compare
its performance against vanilla versions (i.e. without imposing any constraint on them). In section 6 we give
strong arguments in favor of using TNs for describing symmetric states over ANN architectures, implying in
particular the efficiency of symmetric TNs at capturing arbitrary equality constraints when restricted to U(1)
symmetric states. Section 7 presents our conclusion, and section 8 gives an outlook for future work.

2. Problem statement

In combinatorial optimization problems, one is interested in finding the minimum of a cost function over a
specific set of instances, called valid (or feasible) space. Often the set of valid instances grows exponentially
with the problem size (such as in the presence of cardinality constraints), which prevents listing exhaustively
all possible candidates. Although not all combinatorial problems have explicit constraints, the class of
real-world problems that we focus on here are those which can be written as:

min C(⃗x),

subject to A⃗x= b⃗,
(1)

where C : {0,1}N → R, x⃗ ∈ {0,1}N, and A ∈ Zm×N, b⃗ ∈ Zm. (Some of these conditions may be relaxed in
principle and our construction still applies; for instance, we may convert each integer coefficient to a rational
and viceversa via a rescaling of all coefficients in each equality. Similarly, we may work with general
integer-valued variables instead of just binary ones by accordingly increasing the dimension of each site
vector space in the TN as we will describe in the next section). We will denote by S the valid or solution
space, i.e. the set of all bitstrings satisfying the equality constraints. While not all hard constraints are of the
form appearing in equation (1) [26] our focus is on equality type constraints because these are the ones that
best exploit the TN ansatz used in this work.

When the cost function C is linear, the above statement reduces to the standard form of (0,1)-INTEGER
LINEAR PROGRAMMING (see appendix A for an introduction into this class of problems), and when C is at most
quadratic, the corresponding problem can be recasted to a QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

(QUBO) with penalty terms enforcing the equality constraints [27]. In the GEO framework used here, the
form of C(⃗x) can be arbitrary, i.e. GEO is a black-box solver. While many powerful methods exist for dealing
with the minimization part of the algorithm such as branch-and-bound based methods for linear cost
functions, and simulated annealing for problems with arbitrary cost functions, a major roadblock in many of
these solvers is dealing precisely with equality constraints (hard constraints) that restrict the valid space, and
the standard approaches taken are to relax both the integrality and equality constraints as in
branch-and-bound based solvers [22], to impose such constraints via introducing Lagrange multipliers
directly into the cost function as in most QUBO solvers [27] (which for many equalities results in an
overparameterized cost function), or worse yet, to generate many samples only to keep those that meet the
constraints.

Inspired by current generative modeling approaches to the task of combinatorial optimization such as
the ones from [21, 28, 29], we leverage the generalization capabilities of TNBMs to address the optimization
task in equation (1) while constraining them so that they only output valid samples. Crucially, we do not
make any assumption on the nature of the cost function (hence our approach is not limited to
linear/quadratic cost functions). Our approach builds on top of the GEO approach of [21] when subject to
arbitrary integer-valued equality constraints. Specifically, denoting constrained-GEO the constrained
extension of GEO, the problem statement we are interested in can be phrased as follows

CONSTRAINED-GEO

Input: A training dataset T ⊂ {0,1}N satisfying A⃗x= b⃗, ∀⃗x ∈ T , with A ∈ Zm×N, b⃗ ∈ Zm.
Task: Find new, valid samples, x⃗ ∈ S \ T , while minimizing L=−

∑
x⃗∈T pT(⃗x) logP(⃗x).

Here, L is the training loss function in the form of the cross-entropy or negative log likelihood (NLL),
P(⃗x) is themodel distribution represented as a TNBM, i.e. P(⃗x) = |Ψ(⃗x)|2/Z withΨ(⃗x) expressed as a TN
and Z=

∑
x⃗∈{0,1}N |Ψ(⃗x)|2, and pT(⃗x) is the training distribution given by the softmax

pT(⃗x) =
1

M
e−C(⃗x)/T, x⃗ ∈ T , (2)

whereM=
∑

x⃗∈T e−C(⃗x)/T is a normalization factor, and the cost function C (⃗x) is in principle arbitrary (not
restricted to polynomial cost functions) and T is a Lagrange multiplier favoring lower cost samples as T→ 0.
The motivation for the use of symmetric MPS (and in general, symmetric TNs) is that, as we shall show next,
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Figure 1. The proposed constrained-GEO framework. Our framework consists of four steps. Step I involves encoding bitstrings

satisfying A⃗x= b⃗ type constraints into a block sparse tensor network. An efficient embedding of the constraints can be performed
in the presence of some training data satisfying the constraints. In Step II, the initialized tensor network is trained by minimizing
the cross-entropy or negative log likelihood where the training distribution corresponds to a softmax which serves as a surrogate to
the optimization cost function of interest (see equation (2)). The training procedure guarantees block-sparsity of tensors. Step III
involves collecting new samples from the model distribution by perfect sampling. In Step IV, new samples can be merged with the
training dataset to repeat the process or stop when the user is satisfied with the amount of novel samples or a target desired cost is
reached.

they permit to incorporate equality constraints directly into a generative model given in terms of a symmetric
MPS, where tensors acquire a block sparse form. In figure 1 we schematically describe our proposed
constrained-GEO framework for solving arbitrary combinatorial optimization problems subject to equality
constraints which we will describe in more depth in section 4.

3. Symmetric TNs

In this section we give a brief introduction to U(1) symmetric MPS (for more details we refer to the
appendix B). Our motivation here is to set up the notation and terminology that will be used in the following
sections as well as to showcase how symmetric MPS allows to encode arbitrary integer-valued equality
constraints.

3.1. Vanilla andU(1) symmetric MPSs
TNs are a special ansatz to represent high dimensional data, such as quantum states, based on the contraction
of tensors defined on networks. The tensors, whose entries are tunable parameters, are located at the sites of
the network, while the links between tensors capture the correlations among different sites and represent the
amount of entanglement shared among them. It has been shown that many states of physical relevance most
prominently those obeying the so-called area law of entanglement [30, 31], can be efficiently represented by
such ansatz. Among the different classes of TNs, MPS corresponding to one-dimensional TNs, has found the
widest application, in great part due to its low connectivity as well as the presence of a canonical form, which
permits very optimized updating and contracting algorithms [24, 32]. A perspective that is useful when
introducing symmetries in a TN is to view each tensor as a linear map from some input vector space Vin to
output vector space Vout. For instance, a 3-rank tensor in an MPS may be of the form |α⟩=

∑
a,β T

a
αβ |a,β⟩

where |α⟩ ∈ Vin and |a,β⟩ ∈ Vout. Here we make a distinction between upper indices appearing in each
tensor component, referring to them as site (or physical) indices (indices that are not contracted in the TN),
and lower indices corresponding to link (or virtual) indices (indices that are contracted and that control the
expressibility of the TN ansatz). The dimension of each link’s vector space is determined by the bond
dimension χ, controlling the amount of entanglement shared across nearest neighbors. Its size determines in
turn the expressibility of the resulting MPS ansatz. One of the benefits of TNs is that one can reason with
them solely based on their diagrammatic representation. For the tensor above, this is represented as

where the direction of the arrows reflect whether they refer to incoming/outgoing states.
TNs not only permit to construct states based on their entanglement structure, but also allow to exploit

global internal symmetries such as U(1) and SU(2), widely present in many problems of physical relevance.
This essentially constrains the form of each tensor so as to fulfill this global requirement. The simplest kind
of symmetric TN is the U(1) symmetric MPS. An arbitrary vector |v⟩ ∈ V can be expanded as a linear
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combination of |n, tn⟩ ∈ Vn vectors of fixed QN or charge n, and degeneracy label tn = 1, . . . ,dn, where dn is
the degeneracy of charge n. By going to this basis of well-defined charge, a symmetric MPS can be written in
terms of constrained tensors of the form [33, 34]

T a
α,β = (T na

nα,nβ )
tna
tnα ,tnβ

· δn+Nin,Nout , (3)

where

Nin =
∑
i∈I

ni, Nout =
∑
i∈O

ni, (4)

where I (O) denotes the set of incoming (outgoing) indices, and n denotes the flux of the tensor, a label
carrying the charge of the tensor. When using the canonical form (as will be the case throughout in this
work), a symmetric MPS is usually chosen so that the flux of the entire MPS is only carried by one of the
tensors (instead of spread across various tensors), the canonical center (also known as orthogonality center),
while the remaining ones have flux zero (n= 0 in equation (3)). Thus, by exploiting global U(1) symmetry
we see that each tensor in the MPS factorizes into the product of two tensors. The first one, (Tna

nα,nβ )
ta
tα,tβ ,

gives the components of tensor T w.r.t. the degeneracy vectors {|tn⟩}, for that reason this tensor goes by the
name of degeneracy tensor [33]. The second tensor, δNin,Nout depends solely on the conservation of U(1) QNs,
and it is referred to as structural tensor (for an arbitrary symmetry group G the structural tensor can take a
rather nontrivial form) [33]. For fixed physical QN (fixed na appearing in equation (3)), the resulting matrix
Ta
α,β will be block diagonal, with blocks of order dnα × dnβ . These blocks are sometimes referred to as QN

blocks. In other words, charge conservation constrains the form of the tensors to become block sparse,
leading to a more efficient representation of the MPS.

3.2. ConstructingU(1) symmetric MPS
Having discussed the formalism of U(1) symmetric MPS, we now explain how to explicitly construct a
symmetric MPS that only generates bitstrings fulfilling different equality constraints of the form A⃗x= b⃗,
with x⃗ ∈ {0,1}N, A ∈ Zm×N, and b⃗ ∈ Zm. Our construction relies on identifying the site (physical) charges as
the entries of the Amatrix together with the empty charge∅ (i.e. the charge 0 in the case of integer valued
scalar charges), and the total charge of the MPS (i.e. the flux) as the entries of b⃗. The remaining task consists
in determining all link charges consistent with global charge conservation. This will automatically give us the
components of each structural tensor (the degeneracy tensor can always be trivially constructed by
augmenting the dimension of each QN block). We remark, however, that finding the set of all possible
configurations of link charges that add up to flux b⃗ is likely #P-hard, since its associated decision problem,
(MULTIPLE) SUBSET SUM, is at least NP-hard (the variant with A and b⃗ being one dimensional and having
non-negative integer entries is for instance NP-complete [35]). Therefore, in general we will not be interested
in finding all such charges for a given A, b⃗, but rather in finding a way to incorporate them into the MPS once
these are found (finding all charges for small-sized problems may be done via exhaustive search, random
search or dynamic programming).

3.2.1. Cardinality constraint—an exactly solvable case
The original motivation behind the construction of symmetric MPS arose from capturing the conservation
law of total spin Ŝz along the z direction in spin chains (or alternatively, the conservation of particle number
in systems of spinless bosons and fermions). These two types of conservation laws can be viewed as
cardinality constraints of the form

∑
i xi = κ, where xi ∈ {0,1}, and κ ∈ N0 s.t. 0⩽ κ⩽ N. We shall focus

on the case κ⩽ N/2 (assuming N even) since once we find a way to generate bitstrings fulfilling∑
i xi = κ⩽ N/2 we can simply flip all bits so as to generate

∑
i xi = N−κ⩾ N/2.

Given the simplicity of the constraint, we can construct the set of all charges explicitly. For concreteness,
we select the canonical center of the MPS to be located at the first site, where we insert the flux of charge κ;
see figure 2. The construction of the MPS is accomplished once we determine the charges at the link indices.
To distinguish between site charges and link charges we will denote the former via ni with i = 1, . . . ,N, and
the link charges as ni,R, i = 1, . . . ,N− 1 for the link charge immediately to the right of charge ni. As
mentioned at the beginning of this subsection, the site charges will be given by the coefficients of the A
matrix, together with the∅ charge. For cardinality, ni ∈ {∅,1}.

The construction of the link charges requires solving the set of equations ni+1,R = ni,R − ni+1 with the
boundary terms n1,R = κ− n1 and nN−1,R = nN. The solution is given by

ni,R ∈


{κ,κ− 1, . . . ,κ− i}, 1⩽ i< κ,

{κ,κ− 1, . . . ,∅}, κ⩽ i ⩽ N−κ,

{N− i,N− i− 1, . . . ,∅}, N−κ < i ⩽ N− 1.

(5)
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Figure 2. Cardinality constrained MPS. (a) The canonical center is chosen at the first site, corresponding to the site where we
insert the flux κ, which for concreteness we choose to be of value κ= 3. Tensors connected with each other share the same tensor
indices. (b) Charge conservation imposes a block-sparse structure in the tensors appearing in the MPS. Example shown for tensor
T[3].

Crucially, while the solution space is given by the binomial coefficient |S|=
(N
κ

)
(which in particular for

κ≈ N/2 and N≫ 1 grows as |S| ∼ O(eN/
√
N)), the number of parameters in the symmetric MPS ansatz

grows asO(N(κ+ 1)). Thus, the symmetric MPS ansatz is an efficient encoding of the solution space.

3.2.2. Arbitrary single equality
Next we consider an equality of the type

∑
i ai xi = b with ai,b ∈ Z, which appears for instance in SUBSET

SUM-type problems. In this setting, we can still impose this constraint into an MPS, which is accomplished by
first setting the local site charges as ni ∈ {∅,ai}. As opposed to the cardinality constraint above, we cannot a
priori determine the set of link charges for a general equality. A standard approach for this problem would be
to use backtracking: construct all possible link charges solving ni,R = ni+1 + ni+1,R in a forward sweep, and
discard those that are not consistent with charge conservation in a backward sweep. In practice, one can do
better than this and apply ameet-in-the-middle technique [36] whereby we locate the canonical center near
the middle of the MPS and enumerate exhaustively all configurations of charges to the left and to the right, as
well as their corresponding sums. Using a binary search tree on top to match configurations of charges to the
left and to the right adding up to the total charge of interest brings down the time complexity fromO(2N) to
O(N2N/2). Alternatively, when the coefficients ai, b are non-negative one may use a standard dynamic
programming approach with pseudopolynomial runtimeO(Nb) [37].

3.2.3. Arbitrary set of equalities
The most general case of arbitrary number of equalities of the form A⃗x= b⃗, with A ∈ Zm×N, b⃗ ∈ Zm,
x⃗ ∈ {0,1}N is just a small extension of the previous case. Now, each site charge is instead given by a vector of
lengthm as ni ∈ {∅, A⃗i} where A⃗i ≡ (A1,i,A2,i, . . . ,Am,i), while the flux is given by the vector b⃗. In
appendix C we consider ASSIGNMENT-type equalities which appear also in many combinatorial optimization
problems and that can be encoded in an MPS of bond dimension scaling at worst exponentially with the
number of equalities (i.e. these do not scale with system size N).

4. Constrained-GEO

Our framework is divided into three stages (see figure 1): (1) initialization, (2) training, and (3) sampling,
followed by evaluation of the generalization performance. First, we construct the structural tensors based on
the training data, or, if an efficient MPS representation of the valid space is available (such as in cardinality
type constraints), we may also generate training data uniformly from it. Second, we minimize the training
loss function via the DMRG-inspired algorithm put forward in [4]. After a few sweeps we sample from the
resulting MPS and compute the costs of the samples, and retrain the model with those samples together with
the initial training dataset, as we detail next.

4.1. Initialization: constrained embedding
The first step consists in selecting all unique bitstrings from the dataset. Next we construct the set of link
charges by first fixing the position of the canonical center as well as that of the flux. For the purposes of
illustration we set both to be at the last site as shown in figure 3(a). The determination of all link charges for
each bitstring is performed inO(Nm) steps by solving recursively ni+1,R = xi+1A⃗i+1 + ni,R starting from
either end of the MPS. We store in memory each local configuration of charges i → (ni,R,ni+1,ni+1,R)), and
move on to the next bitstring. We repeat the same procedure for the next bitstring in the set, and obtain a
new configuration of charges. Once we loop over all distinct bitstrings from the training set we are ready to
set up the structural tensors by reading off the configuration of charges. At this step, there are two alternative
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Figure 3. Initialization in the generative algorithm. (a) Given a valid bitstring x⃗ satisfying A⃗x= b⃗, we assign to each site charge the
vector xi A⃗i, with A⃗i corresponding to the ith column of matrix A. With fixed site charges and the flux, corresponding to the vector

b⃗, this uniquely determines the set of link charges ni,R in (N− 1)m steps. Carrying this procedure for all bitstrings allows us to
construct the structural tensors δNin,Nout appearing in our symmetric MPS ansatz. (b) Method 1: we map each configuration of
charges (ni,R,ni+1,ni+1,R) to a nonzero entry in the structural tensor. Different dots correspond to different charges. Black lines
indicate compatible configurations. Method 2: same as in Method 1 but we now determine all possible site charges ni consistent
with the set of link charges {(ni,R,ni+1,R)}. Method 2 contains more compatible configurations of charges, hence more bitstrings
are generated using Method 2.

Figure 4.MPS in the cardinality dataset. The training dataset is given by the four bitstrings T = {111000,101010,010101,
000111} fulfilling

∑
i xi = κ, with N= 6, κ= 3. Numbers on top of each link in the MPS correspond to new link charges ni,R

extracted from each bitstring going from the left one (in yellow) to the right one (in blue). The colored paths in the bottom
diagram correspond to the link quantum numbers extracted from each bitstring as we move from left to right in each bitstring
(every jump corresponds to a bit taking value 1).

ways of proceeding forward, as illustrated in figure 3(b). The first one is to directly map each configuration of
charges (ni,R,ni+1,ni+1,R) to a nonzero component of the structural tensor. Together with the finding of
charges, this preprocessing step takesO(Nm|T |) steps when using a hashtable for storing the configuration
of charges. The second approach is to only store the configuration of all link charges consistent with the
training data plus constraints, i → (ni,R,ni+1,R), and subsequently determine all configurations of charges
(ni,R,ni+1,ni+1,R) consistent with the flux of each tensor. In contrast with the previous method, this
preprocessing step scales asO(dNm|T |) when using a hashtable, where d is the dimension of each site, which
for our purposes will be 2 given that we are dealing with bitstrings. Thus we see that this latter method takes
in general twice as much time as the first one. The benefit nevertheless from using this latter method is that
this permits us to find more configuration of charges, which in turn will lead to better generalization,
i.e. more (unique) bitstrings can be generated from the second method than with the first one.

To illustrate these two methods we consider the cardinality dataset formed by bitstrings fulfilling∑
i xi = κ. Focusing on bitstrings of length N = 6 and cardinality κ= 3 we choose the training data

T = {111000,101010,010101,000111}. The resulting MPS using the first method will generate 6 new
bitstrings (10 in total), while the second method will generate the entire solution space of

(6
3

)
= 20 bitstrings.

The extraction of link charges from data is illustrated in figure 4. There we show all possible QNs for each
link index, ni,R, consistent with the cardinality constraint. In total, there are

(6
3

)
= 20 bitstrings. Out of them,

only 4 are needed to extract all link charges. For arbitrary cardinality constraint κ and bitstring length N, it
can be shown that only min(κ,N−κ)+ 1 bitstrings, are needed to exactly construct the fixed-cardinality
MPS using the second method. In our work we shall use the second method when initializing the MPS.
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Figure 5. Training steps in the generative algorithm. 1. Two neighboring tensors are merged in the s-TNBM. 2. Computing the
gradient of the s-TNBM w.r.t. the merged tensor. 3. The two neighboring tensors get updated by the gradient term. 4. The new
tensor is factorized back into two neighboring tensors. The canonical center (orange tensor) has been shifted one site in the
process. We repeat this four steps across all sites in the MPS from left to right and back corresponding to one full sweep.

We remark that the structural tensor crucially depends on the location where we insert the flux, which
corresponds to the location of the canonical center. This is important to bear in mind because the training
procedure will move the canonical center when optimizing each local tensor as we shall describe next
(however the most costly step is setting up the structural tensors at the beginning, as updates during training
in TNs are local, which will only change the link charges around each site, and these charge updates can be
determined efficiently).

Lastly, we note that encoding arbitrary number of equality constraints (without training data) into a TN
may lead to an exponential scaling of the bond dimension (see section C of the appendix for the particular
case of ASSIGNMENT-type equalities). The present approach, guarantees that, in the worst case scenario, the
bond dimension be lower bounded by the number of bitstrings in the training set, which allows for better
scalability of the algorithm.

4.2. Training
Once we have set up the structural tensors deterministically, either via the initialization step described in
section 4.1 or by exact construction of the MPS, we can proceed with the training step. The process is an
extension of the DMRG inspired algorithm described in [4] in the presence of equality constraints. The
training process aims to minimize the loss function

L=−
∑
x⃗∈T

pT(⃗x) logP(⃗x), (6)

where P(⃗x) = |Ψ(⃗x)|2/Z, Z=
∑

x⃗∈{0,1}N |Ψ(⃗x)|2, and pT is a softmax surrogate to the cost function, and is

given as in equation (2). Since the Born machine |Ψ(⃗x)|2 is constructed out of a symmetric MPSΨ, we shall
henceforth refer to this as symmetric-TNBM (s-TNBM). The various steps involved in the training are
summarized in figure 5 and in more detail consist of the following:

1. For fixed location of the canonical center, construct the corresponding s-TNBM for a given bitstring x⃗ ∈ T
by fixing the site charges to xiA⃗i. Merge the two neighboring tensors at the canonical center. In TN notation:

∑
ni,R

T[i]xiA⃗i
ni−1,R,ni,RT

[i+1]xi+1A⃗i+1
ni,R,ni+1,R = MERGE = ≡ TxiA⃗i,xi+1A⃗i+1

ni−1,R,ni+1,R ,

where the link charges are constrained by charge conservation as ni−1,R + ni+1,R = b⃗− xiA⃗i − xi+1A⃗i+1.
Because of charge conservation, the merged tensor will preserve block-sparsity.

2. Compute gradient of NLL as

∂L
∂Tni,ni+1

ni−1,R,ni+1,R

=
Z ′

Z
− 2
∑
x⃗∈T

pT(⃗x)
Ψ ′(⃗x)

Ψ(⃗x)
, (7)
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Figure 6. Profiling computational resources for computing the average training step using vanilla vs. symmetric MPS in the
cardinality dataset. The system size chosen is N= 50 and the cardinality κ= 25. We train both vanilla and symmetric MPS
(initialized in the uniform superposition of fixed cardinality) using |T |= 1000 bitstrings. The results are averaged over 3 sweeps.
Left (right) panel: Wall-time elapsed (memory allocations) as a function of maximum bond dimension in the MPS.

where Ψ ′(⃗x) = ∂Ψ(⃗x)

∂T
ni,ni+1
ni−1,R,ni+1,R

. The term Ψ ′(⃗x) forces the site charges ni, ni+1 to take the values ni = xiA⃗i,

ni+1 = xi+1A⃗i+1. The Z
′
term is exactly given as Z ′ = T ni,ni+1

ni−1,R,ni+1,R , while Z can be evaluated efficiently via
TN contraction.

3. Replace the merged tensor T ni,ni+1
ni−1,R,ni+1,R from theMPS by T ni,ni+1

ni−1,R,ni+1,R −α ∂L
∂T

ni,ni+1
ni−1,R,ni+1,R

, whereα is the learn-

ing rate.
4. Factorize the newly updated merged tensor. This involves two steps.

RESHAPE = , i.e. the merged order-

4 tensor is reshaped onto a matrix. This is followed by a singular value decomposition

SVD = . The resulting spectrumΛ is trun-

cated, keeping the χ greatest singular values. This results in a compressedMPS.We reshape the tensors back

to their original shapes by applying the inverse of the reshape step: RESHAPE −1 =

, where we have identified T[i]ni
ni−1,R,ni,R ≃ U, T[i+1]ni+1

ni,R,ni+1,R ≃ ΛV†. Note the canonical center

has shifted to the right at this point.

We repeat these four steps at every site of the MPS when going left-to-right, and an analogous series of
steps when going right-to-left except that now the canonical center moves one site to the left after every
update.

The main advantage of using symmetric MPS for tasks constrained by equalities is that most of the linear
algebra operations such as merging tensors and factorizing just described can be carried out block-wise, with
each block corresponding to a QN block. This leads to a more efficient optimization procedure than when
using dense (unconstrained) tensors.

To showcase the benefits of using symmetric MPS in practice we consider a cardinality dataset with
N = 50, κ= 25 and |T |= 1000 training samples. Our benchmark experiments were carried out on a
Macbook Pro with a 1.4 GHz Quad-Core Intel Core i5, using 4 threads and on Julia and the ITensors.jl
package for smart index TN contractions [38]. The results showcased in figure 6 indicate that a considerable
advantage is obtained in using symmetric MPS over vanilla MPS in terms of computational resources. We
report memory allocations as well as the wall-time employed during the entire training algorithm (including
computing the gradients, replacing the tensors by the gradients, factorizing the resulting tensors, as well as
computing the NLL after each sweep) averaged over 3 sweeps. In both cases we see the substantial savings on
computing time and space memory: while for vanilla MPS these resources scale polynomially as we increase
the bond dimension χ, for symmetric MPS the increase in resources is barely present, as a result of a total of
21 QN blocks at the middle link.

4.3. Sampling
Drawing samples from ANNs can be challenging, especially when using Markov Chain Monte Carlo
(MCMC) sampling based algorithms due to very long autocorrelation times that limit their efficiency.
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In contrast, TNs enjoy the property of perfect sampling [25]. The bit-wise sampling of MPS is done
without rejections and sequentially as one moves from one end of the MPS to the other, consisting on
computing a series of single-site conditional density matrices and conditional single-site probabilities. The
resulting sampling algorithm avoids long autocorrelation times typical of MCMC sampling-based
algorithms that are needed to extract reliable samples. Since there is no correlation between samples, it is
straight-forward to parallelize the sampling process by, for instance, making use of multi-threading.

Once samples are drawn, we evaluate the generalization performance of the algorithm by computing the
costs of the bitstrings. The performance of the generative model will be measured according to (1) the
quantity of new, valid samples (i.e. bitstrings not contained in the dataset, but that still fulfill the constraints),
and (2) the quality of new samples as measured by the cost (higher-quality samples corresponding to
lower-cost samples). These samples may be merged with the training dataset to form a new training set
which we can be used for initialization and training in a new iteration of the algorithm. Various strategies can
be devised for selecting this new training set as detailed in [21].

5. Results and discussion

To test the performance of s-TNBMs we consider the following tasks. In the first part, section 5.1, we will
analyze how well symmetric MPS are able to generate new valid solutions to A⃗x= b⃗ from a given set of
known solutions. This will test the ability of the structural tensors at capturing QNs that are shared among
different bitstrings, which in turn will lead to generalization. In the second part, we will endow QN blocks
with a degeneracy factor, taking full advantage of both QNs and their dimensions, so as to model arbitrary
probability distributions (not just uniform on the space of solutions) subject to arbitrary equality
constraints. We will test this on two tasks: first, in section 5.2, we shall consider the training dataset to be
sampled from the ground state of a well-known Hamiltonian in condensed matter physics: the one
dimensional transverse field Ising (TFI) model [39], subject to the constraint that only bitstrings of fixed
cardinality are valid. Next, in section 5.3, we will test the ability of s-TNBMs at finding new, high-quality
solutions to combinatorial optimization problems subject to equality constraints by mapping this problem to
a generative modeling task, as briefly discussed in section 2, and detailed in section 4.

5.1. Validity-based generalization: entanglement assisted generation of solutions to arbitrary equality
constraints
Evaluating the generalization performance of unsupervised generative models is a challenging task. For the
following experiments, a candidate generalization metric should favor valid samples that are not only new,
but unique as well. Our focus will be thus to measure variants of the set of new, and unique solutions,
denoted as |gsol| (see [40] where this and other various metrics were introduced).

In the next experiments we shall be interested in generating new solutions to a system of linear
constraints of the form A⃗x= b⃗, where x⃗ ∈ {0,1}N, A ∈ Zm×N, b⃗ ∈ Zm from a set of known solutions. In our
first experiment we consider a single equation of the form

∑
i αi xi = b, where αi and b are random integers

uniformly distributed in the range [−rmax, rmax]. We start with 100 unique known solutions to this equation,
which we shall also call seeds (found e.g. by random search, or SUBSET SUM solvers when possible) and the
goal is to generate as many solutions as possible. Since there is no bias in the training dataset (i.e. all solution
bitstrings carry the same probability), we do not need to carry any explicit training, and instead we only
make use of the initialization step explained in section 4.1, followed by the sampling step on the resulting
s-TNBM. Since the solution space may grow with system size (this growth could be in principle exponential),
we bound the number of solutions found by the number of total queries to the s-TNBM generator, which we
set to be Q= 104. The results of this experiment are shown in figure 7. Remarkably we find that, despite the
absence of obvious global U(1) symmetry given the nature of the equality constraint, we do find very good
generalization performance. It is interesting to see that the performance increases as we scale up system size
N. The number of generated solutions grows at a pace which would be consistent with exponential (we do
not rule out power law) as a function of system size N for fixed rmax, even for large values of rmax.
Importantly, the set of QNs at the middle link, |{nN/2,R}| (which corresponds to the largest structural tensor
link dimension in the s-TNBM), is of size at worst linear as a function of rmax for fixed N, at least for the
system sizes and choices of rmax simulated here. Note this set size is a measure of the complexity of datasets
constrained by equalities, and it provides a lower bound on the minimum bond dimension needed for an
MPS to generate a given number of new, distinct solutions. Clearly, real-world equality constraints will have
a greater degree of symmetry so the results shown here for a single equality with random coefficients A are
already encouraging. This would in turn translate into a smaller bond dimension for a given fixed system
size, and therefore better scalability as we go to larger system sizes.
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Figure 7. Generalization performance using the s-TNBM: one equation
∑

i αi xi = b, where b, αi are random integer coefficients
uniformly distributed in the range [−rmax, rmax]. The input is 100 bitstrings found by random search, and the goal is to generate as
many new, unique solutions after Q= 104 queries on the s-TNBM. Left panel: Missing ratio of new, unique solutions |gsol| found
after Q queries, as a function of system size N for various choices of rmax. Data averaged over 10 samples and error bars
corresponding to standard errors. Right: growth in the number of distinct charges at the middle link for various choices of N.

Figure 8. Generalization using the s-TNBM: five equations of the form A⃗x= b⃗. Left: Number of new and unique solutions
generated when sampling Q= 104 times on our s-TNBM as a function of training set size |T | of unique training bitstrings for a
system size N= 50 and rmax ∈ {1,2} (solid and dashed lines, respectively). Dotted lines correspond to best power-law fit for each
case. Right: Corresponding QN set size at the middle link as a function of |T |.

To have a better intuition on these results and on the role played by the bond dimension, it is helpful to
consider the most symmetric equality constraint, that of cardinality, where αi = 1 ∀i. As argued in
section 3.2, an exact MPS representation of the entire valid space requires a bond dimension of at least
χ =O(κ) (in fact χ =min(κ,N−κ)+ 1), while the solution space grows exponentially in N (for
κ≈ N/2). How does this relate to the generalization capabilities of s-TNBMs? In figure 4 we gave an
intuition of this mechanism, focusing on N = 6, κ= 3. For concreteness we choose the canonical center to be
located at the first site. We label all link indices by their QNs. Next, we apply the initialization step of the
algorithm explained in section 4, with the set of four colored bitstrings in figure 4. These four samples
already covers all possible QNs for each link with bond dimension 2,3,4,3,2 respectively. The corresponding
MPS is able to generate all valid

(6
3

)
= 20 bitstrings. The choice of the four samples is not unique as long as

they patch the entire set of link QNs from start, at n0,R = κ (viewing the extra dashed index on the left of the
MPS in figure 4 as having charge κ) to finish, at n6,R = 0 (viewing the extra dashed leg on the right of the
MPS in figure 4 as having charge 0). Of course this experiment carries over to any cardinality and system size.
The upshot is that the minimum number of bitstrings needed to generate all solutions to a given equation is
lower bounded by the number of QNs at the middle link. In other words, how well our s-TNBM is able to
generalize depends crucially on the number of distinct paths that can traverse this middle link.

We scale up the previous experiment from one to five equations, where now A, b⃗ entries are chosen
uniformly random in [−rmax, rmax]. The results of the experiment are shown in figure 8. We are interested
here in checking how efficiently does our s-TNBM generalize as a function of training set size, i.e. how many
new, unique solutions, as a function of the training set size |T | are found by the s-TNBM. The training set is
provided by random search and keeping valid samples. We find that, even for random instances as the ones
considered in here, where rmax ∈ {1,2}, our s-TNBM is able to generate new solutions with a power-law
exponent close to 2, as shown by the best-fit power-law exponent 1.8 and 2.4 in figure 8. The corresponding
QN set size at the middle link grows linearly, and in fact scales roughly as |T |, |{nN/2,R}| ≈ |T |.

So far our focus has been solely on the generalization capabilities of s-TNBMs at generating new
solutions to A⃗x= b⃗, without any comparison to the performance of vanilla TNBMs at the same task. In
figure 9 we consider that comparison. A vanilla TNBM does not include any bias from the constraints, so one
must train them using the DMRG-like algorithm from [4] (and extended to the presence of equality
constraints in section 4.2). The experiment now considers a set of two equations with integer coefficients
randomly selected in the range [−2,2]. We are interested in the number of new, unique solutions, |gsol|,
found after a given number of queries Q to the generator. A useful metric in this sense is the coverage, as
introduced in [40], and defined as

C=
|gsol|

|S|− |T |
, (8)
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Figure 9. Comparison between vanilla and symmetric TNBM at generating new solutions to A⃗x= b⃗ as measured by the coverage.

We consider two equations with N= 20 binary variables, where the entries in A and b⃗ are randomly selected integers in the set
{−2,−1,0,1,2}. The goal is to generate new solutions from a fixed |T |= ϵ|S| number of samples, where |S| is the total number
of solutions fulfilling the two equations, which is |S|= 9452. Results shown after Q= 104 queries. Different bond dimensions
correspond to best results out of 10 trials using vanilla MPS (color lines). The symmetric MPS results do not require training,
only the initialization step explained in section 4.1. Black dashed lines correspond to the coverage after sampling from the
resulting symmetric MPS, whereas red dashed lines correspond to the maximum coverage using symmetric MPS, obtained after
exact TN contraction. Top: coverage for a training dataset with ϵ= 0.1, and bond dimension χ= 37 for the symmetric MPS.
Bottom: same but with ϵ= 0.01, and bond dimension χ= 26 for the symmetric MPS.

where |S| is the number of solutions to the system of equations. This metric measures effectively the number
of new, unique solutions found by the generator within the remaining available solution space (not
contained in the training set). Note that this quantity is implicitly a function of the number of queries to the
generator. Given the system size chosen, N = 20, we can compute explicitly all solutions to random system of
equations, which for our experiment turns out to be |S|= 9452. We feed in both symmetric and vanilla MPS
the same amount of training data, given as T = ϵ|S|, with ϵ< 1, which consist of unique, valid samples.
When the training set contains 10% of the solutions (ϵ= 0.1), both vanilla and symmetric MPS are able to
generate new solutions with comparative performance. Two crucial differences between the vanilla and
symmetric MPS results is that a priori we do not know which bond dimension gives the best performance
using vanilla MPS and so one is left with trying many of them only to pick up the one that gives the best
results, in this case χ= 22. This is not the case when using symmetric MPS, where the bond dimension is
fixed entirely by the training set and the constraints, i.e. it is given by the QN set size at the middle link,
χ = |{nN/2,R}|. Perhaps more importantly, there is no training required when using symmetric MPS because
the ansatz already contains the inductive bias coming from the constraints, and we only need the
initialization step from section 4.1. The benefits of using symmetric MPS at learning datasets with equality
constraints become more evident in the presence of scarcity of training samples: when we lower this amount
down to 1% (ϵ= 0.01), vanilla MPS produces about 3% of the remaining unique solutions after Q queries.
This is true even for various choices of learning rates used in here, with the results of α= 0.02 displayed in
figure 9, whereas the symmetric version does so at around 50%, down from around 55% when ϵ= 0.1.

5.2. Quality-based generalization: ground state reconstruction of local symmetric Hamiltonians
In this part we consider a generative model capturing equality constraints as well as a distribution bias. Our
goal here is to learn the distribution corresponding to the ground state of the TFI model subject to an
equality constraint which for simplicity we take it to be of cardinality type. The TFI Hamiltonian reads

H=−s
N−1∑
i=1

ZiZi+1 − (1− s)
N∑
i=1

Xi, (9)
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Figure 10. Loss curves for symmetric vs. vanilla MPS in the TFI Hamiltonian subject to cardinality constraint in the presence of
scarcity of data. (a) KL divergence using vanilla MPS for different bond dimensions. Solid lines correspond to training KL, dashed
lines correspond to testing KL. χ= 16 corresponds to the minimum testing KL. (b) Same but for symmetric MPS. (c) U-curves
corresponding to final testing losses for ϵ ∈ {0.005,0.01,0.05}, as a function of bond dimension χ. Error bars correspond to
standard error after 10 independent training iterations.

where s ∈ [0,1], and {Xi,Zi} are Pauli matrices. Here we shall take s= 1/2, corresponding to the critical
point of the TFI model, and the system size to be N = 20. This Hamiltonian by itself is not U(1) symmetric
(however it does have an inherent global Z2 symmetry, since the Hamiltonian is invariant under the parity
operator P=

∏N
i=1Xi), but its ground state is nevertheless efficiently captured by an MPS of low bond

dimension, χ≈ 8 (note however that for general N, the MPS ansatz is suboptimal at the critical point since
entanglement grows logarithmically S∼ logN, and instead the multi-scale entanglement renormalization
ansatz is a better choice, see [41]). The target distribution corresponds to that constructed from taking the
Born machine associated with this ground state followed by a fixed cardinality filter, that is, we project the
resulting MPS onto the manifold of states constrained to only sample bitstrings fulfilling

∑
i xi = κ, where

for concreteness we choose the cardinality κ= N/2= 10. Thus the entire solution space (composed of all
valid bitstrings fulfilling the cardinality constraint) is |S|=

(20
10

)
≈ 185× 103.

In figure 10 we show the training and testing loss curves in terms of their respective Kullback–Leibler
divergences using vanilla vs. symmetric MPS for a training dataset size of |T |= ϵ|S| (note that the set may
include repeated samples, in which case their probabilities are weighted according to their frequency). We see
that while for ϵ= 0.05 both vanilla and symmetric MPS are able to learn the underlying distribution just as
well, when data is scarce, ϵ≲ 0.01, the symmetric counterpart performs better. These results are obtained
without major refinements, in particular the learning rate is fixed throughout and of value α= 0.02 (in
principle it would be advisable to adjust this as a function of the size of the tensors [4]), no DMRG noise is
used, and no minibatching or multiple inner steps (i.e. multiple consecutive gradient updates at the same
site) has been used. These tricks can bring down the value of the loss function by escaping local minima and
may be crucial steps for larger scale models.

It is a well-known fact in machine learning (ML) models, that the testing loss may develop a U-shaped
curve as a function of model capacity [42]. This is a consequence of the bias-variance tradeoff. In
figure 10(right panel) we show that both vanilla and symmetric MPS display such a U-curve, as a function of
bond dimension (see also [43]). This type of overfitting behavior is static in that it only depends on the
complexity of the MPS as parameterized by its bond dimension χ. On the left and central panel in the same
figure we also report a different kind of overfitting behavior which we dub dynamic in that it develops as a
function of sweeps, and is more pronounced in the case of symmetric MPS, where at large enough χ, the best
testing loss is localized at around a minimum after a few sweeps—such dynamic U-curve is also present in
vanilla MPS, but its convexity is less striking.

We remark that we have also tried more suitable Hamiltonians with an inherent cardinality constraint,
such as the Heisenberg model. This considerably improves the testing loss (since the Hamiltonian already
satisfies the constraint) but we found the minimum in the U-curve to be located at the minimum bond
dimension needed to learn the constraint, χ= 11 for N = 20, which of course is not the general case for
arbitrary cost functions (not just the ones stemming from local Hamiltonians).

5.3. Quality-based generalization: finding optimal solutions to constrained combinatorial optimization
problems
The previous example was motivated by physics, in particular by exploiting the locality of the cost function
in the form of the TFI Hamiltonian. Here we illustrate how s-TNBMs can also be used to find novel and
optimal solutions to combinatorial optimization problems subject to equality constraints, outperforming
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Figure 11. Constrained combinatorial optimization with cardinality constraint and negative separation cost function. Final
bitstring distributions using the optimal choices of bond dimensions for vanilla MPS vs. symmetric MPS, for a given softmax
temperature choice T. The cardinality constraint is

∑
i xi = N/2, with N= 20 (top panels) and N= 30 (bottom panels), being

the size of the bitstrings. We are interested in the final utility metric after training convergence. Blue histograms correspond to the
model distributions, extracted after sampling Q= 10000 times from the TNBM; orange histograms correspond to the
distribution of |T |= 1848 training bitstrings, which is formed of uniformly distributed, unique bitstrings satisfying the
cardinality constraint but restricted to the subspace of bitstrings of cost greater or equal to−6 for N= 20, and−8 for N= 30;
and green histograms correspond to the uniform distribution, extracted from the uniform distribution of all bitstrings satisfying
the cardinality constraint. Left panels: results for vanilla MPS at T= 1. Middle panels: results for symmetric MPS at the same
temperature T= 1. Right panels: results for symmetric MPS at T= 1/2.

vanilla TNBMs. As an example, let us consider the cost function to be the negative separation cost of
bitstrings, which is the negative separation of the farthest two ‘1’ separated only by ‘0’ bits. For instance, for a
bitstring 01011001 the negative separation cost would be−3. The goal of the task is to generate bitstrings
with the largest negative separation cost (in absolute value) as possible, subject to an equality constraint
which we take to be the cardinality constraint. This is achieved using the constrained-GEO framework
described in section 4, where the cost function appearing in the softmax corresponds to the negative
separation cost subject to a cardinality constraint. Because of this constraint, we assign a cost zero to invalid
samples (bitstrings not fulfilling this constraint). The starting point is a set of valid solutions that have a
negative separation cost at or above C0. We remark that as opposed to the previous task, with a physics
motivation, the current exercise serves as a proxy for typical cardinality constrained optimization problems
appearing in industry problems, such as portfolio optimization [12] and traveling salesman [44], both
NP-hard problems [44, 45].

The results of this experiment are shown in figure 11, where the learning rate is fixed to α= 0.02
throughout, and we choose two different system sizes. For N = 20 and κ= 10, the training set contains only
bitstrings of cost greater than or equal to C0 =−6, while for N = 30 and κ= 15, the training set contains
only bitstrings of cost greater than or equal to C0 =−8. To test the performance of both models at capturing
low cost samples outside the training set we make use of the utility metric, as introduced in [40]. It amounts
to computing the average cost of the 5% lowest cost samples obtained from querying the trained models. The
motivation for this metric is that, often times, one is not interested in a unique lowest cost sample (which
could have been found by mere luck). By taking instead a small percentage of the lowest cost samples, we
make a more robust assessment that the model is indeed obtaining consistently high quality (low cost)
samples. Our results indicate that, while the vanilla TNBM is not able to extract any better samples than a
constrained uniform sampler, corresponding to the model that samples all bitstrings of the given cardinality
uniformly, the symmetric version not only does sample already within the valid target space of fixed
cardinality (thus avoiding samples with cost zero), but their samples are of higher quality as evidenced by the
utility metric U. The value of this metric is even further optimized when decreasing the temperature in the
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Figure 12. Flowchart of all the steps entering in the tensor network generative algorithm for combinatorial optimization problems
with hard-constraints. See also algorithm 1 for a detailed description of the various steps.

softmax function, giving further evidence that the s-TNBM is able to learn the bias and that biasing the
training set helps the s-TNBM to propose even better candidates. Crucially, we see that the performance gap
between symmetric and vanilla TNBMs increase as we increase the system size from N = 20 to N = 30: in the
latter case, the vanilla TNBM is not able to capture the cardinality constraint to the extent that less than 20%
of the samples are valid, and more importantly, the quality of the valid ones, as measured by the utility, is still
far from that obtained using s-TNBM.

Algorithm 1: Tensor network generative algorithm for hard constraints.

Input Callback cost function y= C(⃗x), x⃗ ∈ {0,1}⊗N, and equality constraints A⃗x= b⃗
Output x⃗∗ ≈ argmin(C(⃗x))

ψ(⃗x)← Constraints A⃗x= b⃗ ▷Build∗ uniform TN from constraints (all QN blocks set to same value)
t← 0
T ←SAMPLE(|ψ|2) ▷ Extract training set via perfect sampling from s-TNBM
U|t←mean(5% lowest {C(⃗x): x⃗ ∈ T }) ▷Compute utility from mean of lowest cost 5% samples
while (U|t+1−U|t)> ϵ do

t← t+ 1
if t odd then
T ← T |5% ▷Create new training set from 5% lowest cost samples
pT({⃗x ∈ T })←{C({⃗x ∈ T }),T} ▷Construct training distribution pT(⃗x) = e−C(⃗x)/T/

∑
x⃗∈T e−C(⃗x)/T

ψ(⃗x)←{Constraints A⃗x= b⃗,Samples T } ▷Constrained TN embedding from constraints and samples
else
pT({⃗x ∈ T })← {⃗x ∈ T } ▷Construct uniform probability distribution over training set

ψ(⃗x)← Constraints A⃗x= b⃗ ▷Rebuild∗ uniform TN from constraints (all QN blocks set to same value)
end if
ψ ←TRAIN(ψ) ▷Train MPS with distribution pT for a few sweeps
T ←SAMPLE(|ψ|2) ▷ Extract training set via perfect sampling from s-TNBM
U|t+1←mean(5% lowest {C(⃗x): ∀⃗x ∈ T }) ▷Compute utility from mean of lowest cost 5% samples

end while
Return x⃗= argmin(C(⃗x): x⃗ ∈ T ))

∗: When an efficient TN representation of the solution space does not exist, an alternative construction is to search
randomly samples satisfying the constraints and applying the Constrained TN embedding step on these. This will only
construct an approximate TN to the entire solution space (note that in general the TN ansatz will contain more
solutions than are fed in from a set of seeds, as argued in section 4.1).

In the next experiment we take full advantage of the knowledge that an exact and efficient representation
of the valid space exists in terms of a symmetric MPS of fixed cardinality. We consider here a much larger
system with N = 50 and cardinality κ= 25, which results in a solution space of size |S|=

(50
25

)
≈ 1.26× 1014.

We use the following protocol, which is also summarized in figure 12 for general equality constraints and
detailed in algorithm 1. The first step is to sample uniformly from the fixed cardinality MPS. To guarantee
that this sampling is uniform over the space of fixed cardinality bitstrings, we set all allowed QN blocks to be
of size 1× 1 and filled in by the same value (the value will be set by the normalization condition of the TN).
This forms our initial training set. We train as usual for one sweep with this initial choice of MPS and sample
at least as many times as samples there are in the training set. For our experiments the size of the training set
is always fixed to be |T |= 100, while the number of samples or queries on the generator is Q= 104 (we
emphasize again that sampling on an MPS can be done very efficiently). With the samples at hand we keep
the 100 lowest cost samples as the new training data set. At the next step we apply the initialization step
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Figure 13. Finding optimal solutions when efficient MPS representation is available, using algorithm 1. Data shown for N= 50,
κ= 25, and negative separation cost as cost function. The utility extracted from the model distribution after the first step is
Umodel|t=1 =−11.05, while that at the final step is Umodel|t=6 =−20.0. The uniform sampler has utility Uuniform =−9.64. Bond
dimension and learning rate are fixed throughout all steps and given by χ= 30, α= 0.02, respectively.

described in section 4.1 so as to extract the most relevant QNs from where we construct our next initial MPS.
Next we train for one sweep with an effective temperature which we choose to be T= 1/2std(C({⃗x ∈ T })),
with std the standard deviation. We next sample Q times and keep the lowest cost 100 samples for our next
step training dataset. We repeat this procedure for as long as the results improve. The results of this
experiment are shown in figure 13. After only 6 steps (and only a couple minutes of computational time on a
regular laptop), the symmetric MPS is able to reach a minimum cost of C =−20, with the absolute
minimum corresponding to C =−26. To put this result into context, we remark that the space of bitstrings
with cost C ⩽ 20, satisfies |S|C⩽20/|S| ≈ 10−7 (see appendix D for an exact analytical expression), so that a
constrained uniform sampler over the solution space would require at least of the order ofO(103) times
more samples than the ones carried out here, indicating that our MPS indeed is able to find its way to a
subspace near the global minimum, even when this effectively corresponds to a tiny fraction of the entire
valid space, and in turn the cost function is highly nonlocal.

This optimization scheme bears some resemblance with the QAOA and other approaches following an
exploration/exploitation paradigm: the TN REBUILD step serves as a mixer near the optimum solution (which
learns over the best data from the previous iteration), while the TN Embedding step, moves directly along the
direction of minimum by learning only the most relevant QNs (latent features) from the lowest cost samples
from the previous iteration. Our approach, being data driven, is agnostic to the form of the cost function, as
illustrated in our experiments.

6. Comparison to neural network architectures

TNs are an efficient representation of states with limited amount of entanglement. In recent years there has
been a lot of excitement about the possibility of using other representations that may be more efficient than
TNs at capturing long-range entanglement. RBMs, the building block of many deep neural network
architectures, have been suggested to be a more efficient representation than TNs for certain classes of states
displaying long-range entanglement [46, 47]. Here we argue that U(1)-symmetric states may be more
challenging to construct using RBMs, and likely the same true for any G-symmetric state, with G any global
internal symmetry, when compared to TNs. The intuition behind this argument relies on the fact that TNs
are multi-linear models. In particular, the contraction of an MPS with one-site operators can be performed
locally. Under a global group transformation represented by a unitary matrix U(g)⊗N, with g ∈ G, the new
MPS can be constructed straight-forwardly, see figures 14(a) and (b). In contrast, for a RBM, after applying
such global group transformation, it is very challenging to get the weights of the new RBM. Unlike for a TN,
we have to train the new RBM. So it becomes natural to impose such symmetries in TNs, in contrast to
RBMs or ANNs in general.

For a TN, group operations on sites will introduce group representations on each link consistent with
charge conservation. So a global symmetry transformation will generate group representations on each link
of the MPS. While for RBM or ANN, it is very challenging to have this property.

Another argument in favor of TNs for describing symmetric states is precisely due to the linearity of the
TN. As shown in figures 15(a) and (b), it is very easy to construct the linear hybridization of two MPS, the
new tensors are a direct sum of these MPS tensors. The bond dimension would be the sum of bond
dimensions ofΨ1(x) andΨ2(x), and the construction is exact. In contrast, for a RBM, we are not able to
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Figure 14. Illustration of how a TN and RBM are transformed under global symmetry. (a)Ψ(x) is an MPS with G symmetry. The
MPS remains constant under a global rotation for all sites. (b) The local tensors can be associated with the original ones by
contracting local tensor T with gate U. (c) Global symmetry transformation on a RBM, which results in a new RBM with updated
weights. Due to the sparsity structure of the RBM network, it becomes very challenging to get the updated RBM parameters after
the symmetry transformation.

Figure 15. Linearity of TN vs nonlinearity of RBM. (a) Linear hybridization of two different MPSΨ1(x) andΨ2(x) can be
accomplished by constructing a new MPS with each tensor taking the direct sum as shown in (b). However, for nonlinear models
such as RBM or ANNs, it is very challenging to construct the sum of P1(x) and P2(x) directly without any training.

construct the new RBM directly from the original RBM parameters. The only option left is to train a new
RBM, which mimics the summation, which is only an approximation.

7. Conclusions

In this work we have shown how one can use symmetric TNs for the purpose of generative modeling and
constrained combinatorial optimization. We have tested their performance on various datasets serving as
proxies for the kinds of problems our generative algorithm, dubbed here constrained-GEO, is applicable to.
Most prominently, we include combinatorial optimization problems subject to arbitrary integer-valued
equality constraints, which appear in many problems of industrial interest. We have found that by mapping
the problem of equalities to a problem involving U(1) global charges, a symmetric MPS generative model is
able to generalize (even in the presence of random instances of A and b⃗). This class of models, referred here
as s-TNBMs, has a series of benefits which we recount:

• By exploiting U(1) global charge conservation, we are able to reduce the space complexity by working with
block-sparse tensors, as opposed to dense tensors, as shown on the right panel of figure 6.

• In turn, given the block-sparse structure of tensors allows for faster learning of the data, often requiring an
order of magnitude less number of sweeps to converge when training for the problem sizes studied in here.
∗ This point translates into less computational time per operation (contraction, merging) as shown on the
left panel of figure 6;

∗ Less number of sweeps as shown on figures 10(a) and (b); and
∗ No time is spent on sampling invalid samples.
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• It permits to have a better intuition on the complexity of the data, as viewed when counting the number of
QN blocks appearing in the MPS (i.e. the minimum bond dimension needed to exactly capture all charges
from the data).

• It allows to generalize in the presence of scarcity of data.
• It allows to find better solutions in the context of combinatorial optimization problems subject to con-
straints.

Of all these points, the last two ones are perhaps the most relevant ones. Classical ML models require many
samples for them to generalize. By exploiting internal global symmetries like U(1), which in turn are hard to
impose in ANNs architectures as argued in section 6 (see also [48, 49]), we are able to reduce the amount of
training data even further. The last point is also worth stressing: symmetric TNs were originally conceived to
efficiently encode quantum states subject to global symmetries, but in the context of finding ground-states of
Hamiltonians, as well as in the context of Hamiltonian dynamics. What we have found in this work is that
constraining TNs may be a key step at not only decreasing the complexity of the learning algorithm, but
crucially, at finding novel and better solutions to constrained combinatorial optimization problems, which
would be otherwise out-of-reach by other classical ML and state-of-the-art optimization heuristics.

8. Outlook

A clear future extension of the current work is to analyze the role of other symmetries. Trivial extensions
include other Abelian symmetries, like Z2, which appear in physical models such as the TFI model discussed
in this work, but also in some toy datasets like the parity dataset, for which TNs have already shown superior
performance over ANNs such as RBMs at both learning and generative modeling performance [50–54].
Perhaps more intriguing would be to study the role of non-Abelian symmetries in the context of generative
modeling. Of special relevance is SU(2), perhaps the other most relevant quantum-inspired symmetry apart
from U(1), and for which a way to construct TNs that are symmetric under SU(2) already exists in the
literature [55–57]. A more challenging and practically relevant question is to address the presence of
inequality constraints (i.e. of the type A⃗x⩽ b⃗), which also abound in many combinatorial optimization
problems. This is an ongoing work and will be presented in a subsequent publication.

We now put our work into the broader context of current progress in the domains of constrained
combinatorial optimization and ML models exploring the role of symmetries and constraints. In the domain
of combinatorial optimization, GNNs have become a very promising framework (see e.g. [17, 58]). In this
case, one can encode the coefficients of matrix A and vector b⃗ as features in a bipartite graph. This approach
leverages generative modeling for node selection and variable selection, steps that appear in
branch-and-bound for solving MILP problems. In the context of quantum models addressing QUBO
problems with hard-constraints, such as XY-QAOA [59, 60], current methods suffer from the fact that only a
very limited set of equality constraints can be addressed, namely those for which one can implement local
moves around the valid space (and which can be implemented by at most two-site, local gates), such as
cardinality-type constraints. Likewise, a recent TN approach was proposed to tackle the open-pit problem
subject to equality constraints [8]. While bearing some resemblance to our work, this approach however is
only valid for equality constraints with a locality structure, in that only few local variables can appear at any
time in any equality, and where in turn the cost function must be mapped to a local Hamiltonian. Our
approach is not limited by specific equality constraints nor by specific choices of cost functions.

On the side of implementing symmetries in the context of ML, there has been very recent interest in
equivariant ANNs, both classical (see e.g. [61, 62]), and quantum (see e.g. [63–66]). Equivariant ANNs
exploit symmetry in data so that the output samples also preserve this symmetry, such as is the case of E(3)
equivariant ANNs (which transform data under translations and rotations, with applications including
image processing). In contrast, our work exploits symmetry at the level of the generator, in this case a
s-TNBM, so that it only outputs samples satisfying arbitrary equality constraints, where different equality
constraints correspond to different irreps of U(1) (i.e. different fluxes in TN terminology). Lastly, there has
been recent interest in using autoregressive neural networks for modeling physical systems with local gauge
symmetries [67, 68], which are fundamentally different from the global internal symmetries we are interested
in here. The latter have been studied in works [69, 70] for the simplest U(1) symmetry corresponding to an
equality of cardinality type, using recurrent neural networks (RNNs). However at present it is not clear how
to extend their construction to arbitrary equality constraints, and if so, whether the resulting RNN
corresponds to a more efficient representation than that of symmetric MPS.

An exciting milestone ahead is to demonstrate the power of our s-TNBMmodels in the context of
large-scale industrial applications. Achieving such quantum-inspired advantage would be a promising step
towards demonstrating practical quantum advantage with near-term devices. This could be possible by
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exploiting recent efficient proposals [71, 72] to map TNs to quantum circuit generative models such as
quantum-circuit Born machines [73].
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Appendix A. Introduction to (0,1)-INTEGER LINEAR PROGRAMMING

(0,1)-INTEGER LINEAR PROGRAMMING problems are optimization problems that involve binary decision
variables, taking values 0 or 1. The objective is to find the combination of variables that maximize or
minimize a given linear function subject to a set of linear constraints.

A.1. Formulation of the problem
The general form of a (0,1)-INTEGER LINEAR PROGRAMMING problem can be stated as follows [22]:

MAXIMIZE OR MINIMIZE c⃗ · x⃗
SUBJECT TO A⃗x⩽ b⃗,

where ci and Aij are integer coefficients of the objective function and the constraints, respectively. The
variables xi, take on binary values of 0 or 1, and bi are integers. This class of problems belong to one of Karps’
list of 21 NP-COMPLETE problems. Hence, solving instances of this problem takes in general exponential
computational resources in the problem size.

There exist extensions of the (0,1)-INTEGER LINEAR PROGRAMMING to the case when some of the variables
are let to be arbitrary reals and the rest arbitrary integers, in which case this class of problems goes by the
name of MIXED INTEGER LINEAR PROGRAMMING (MILP) problems. This class of problems are well-known to be
NP-HARD as well in general. Other extensions include the case when the objective function and/or
constraints are not linear functions (and some variables are still integer valued). The complexity class
corresponding to nonlinear integer programming is also NP-HARD and expected to be in general much
harder to solve than their linear counterparts.

We will briefly discuss some standard methods for solving (0,1)-INTEGER LINEAR PROGRAMMING problems
(we refer the reader to reference [74] discussing some of their extensions to the presence of nonlinear cost
functions and linear constraints, which is the class of problems our TN algorithm is able to handle).

A.2. Solutionmethods
The solution to a (0,1)-INTEGER LINEAR PROGRAMMING problem can be found using a variety of methods. We
distinguish two classes of methods: exact methods, including branch and bound, cutting plane, and branch
and cut algorithms; as well as heuristic methods, including simulated annealing, parallel tempering, and
genetic algorithms. The difference between these two classes is that the former provides guarantees of
optimality of the solutions found, but do not scale well with problem size in general. The second class of
methods, being heuristic do not have guarantees of optimality but do not suffer from the same scalability
issues. Here we review the former class of methods since they are the ones most frequently used in most
MILP solvers [14]. This class of methods involve iteratively solving a series of linear programming problems,
where the decision variables are not restricted to binary values. All of these methods are discussed in detail in
standard references such as reference [22].

Branch and bound –. The branch and bound algorithm works by dividing the search space into smaller
subspaces (or branches), and using bounds on the objective function to eliminate subspaces that are
guaranteed to contain suboptimal solutions. The algorithm then selects the subspace with the best solution
and divides it again until the optimal solution is found.

Cutting plane –. The cutting plane algorithm involves adding additional linear constraints to the problem
to exclude certain solutions. These additional constraints are based on the solution to the current linear
programming problem and are designed to tighten the feasible region of the search space.
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Branch and cut –. The branch and cut algorithm combines the techniques of branch and bound and
cutting plane. The algorithm begins by using branch and bound to divide the search space, and then uses
cutting plane to tighten the feasible region of each subspace.

Appendix B. Symmetric TNs

In this appendix we give a brief introduction to MPSs and their U(1) symmetric versions, as done in [33, 34].

B.1. Vanilla TNs andMPSs
Consider a system of N sites where each local site is characterized by a local complex vector space V. A
wavefunction for this system is given as

|Ψ⟩=
∑

i1,i2,...,iN

(Ψ)i1,i2,...,iN |i1, i2, . . . , iN⟩, (B1)

with |iv⟩ ∈ V. The coefficient (Ψ)i1,i2,...,iN is in fact a tensor, of rank N. The main idea behind TNs is to
decompose this big tensor into tensors of smaller rank contracted with each other such that [34]

(Ψ)i1,i2,...,iN = t Tr

(
N⊗

v=1

T[v]iv

)
, (B2)

where t Tr stands for tensor trace which contracts all repeated tensor indices of tensors T[v]. A TN of special
relevance is the MPS which is given as

(Ψ)i1,i2,...,iN = Tr(T[1]i1T[2]i2 . . .T[N]iN), (B3)

where the trace now is a conventional matrix trace, where each tensor T[v]iv is a χv−1 ×χv matrix with

components T[v]iv
lv−1,lv

. For our purposes, we shall be considering the MPS with open boundary conditions [75]
so that the left- and right-most tensors are actually vectors so that χ0 = χN = 1 (so that the trace is not
needed). A perspective that is useful when dealing with symmetry group transformations on tensors, is to
view tensors as linear maps from an input vector space Vin to output vector space Vout. A significant
simplification in many TN algorithms involving MPS is to use the canonical form [24], which is used
throughout in this work. When put in canonical form, tensors to the left of the canonical center correspond
to left isometries, satisfying |β⟩=

∑
a,αT

a
α,β |a,α⟩ with

∑
a(T

a)†Ta = 1 and where |a,α⟩ ∈ Vout and

|β⟩ ∈ Vin, while tensors to the right of the canonical center correspond to right isometries, satisfying
|α⟩=

∑
a,β T

a
α,β |a,β⟩ with

∑
aT

a(Ta)† = 1 and where |α⟩ ∈ Vin and |a,β⟩ ∈ Vout. Each link or virtual state
can be represented as |lv⟩ ∈ {|1⟩, |2⟩, . . . , |χv⟩}. The size of each link vector space is sometimes known as
bond dimension, and its magnitude controls the amount of entanglement shared by connected tensors. The
states associated to the upper index iv will be referred to as physical states, since they are the ones that appear
in the original wavefunction expansion (B1), at variance with the virtual states just discussed.

B.2.U(1) symmetric MPSs
Since tensors are linear transformations, the TN ansatz makes it very convenient to exploit the toolbox of
representation theory. In essence, by requiring that our state |Ψ⟩ be invariant under a global group
transformation G represented by a unitary matrix Ug, with g ∈ G s.t. [33]

(Ug)
⊗N|Ψ⟩= |Ψ⟩, (B4)

we may constrain the form of each tensor in the MPS as dictated by the transformation∑
a ′,b ′,c ′

(Ug)c,c ′(Vg)b,b ′Tb ′

a ′,c ′(Wg)
†
a ′,a = Tb

a,c, (B5)

where Vg,Wg are unitary representations of the same group G. The upshot of this is that each tensor will be
constrained to have nonzero entries only at those entries fulfilling equation (B5). Our focus here will be on
tensors that are symmetric under G = U(1), where representations are one dimensional and parameterized as
Ug = e−in̂ϕ, with n̂ the so-called charge operator and ϕ ∈ [0,2π). This means that our state must be invariant
under this group transformation up to a phase:

e−i n̂ϕ|Ψ⟩= e−inϕ|Ψ⟩, (B6)
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where the state |Ψ⟩ is an eigenstate of the charge operator n̂ with eigenvalue n,

n̂|Ψ⟩= n|Ψ⟩. (B7)

Note that, the case n= 0 corresponds to the state being invariant (as in (B4)), while for n ̸= 0 one obtains a
covariant state. Such phase factor only arises for states that are covariant under Abelian group
transformations like U(1) (in the case of non-Abelian group transformations, covariant states transform
instead under a unitary matrix of dimension 2 or higher). The different charges n label different irreps of
U(1) so that for each vector space V we may decompose this as

V≃
⊕
n

Vn, (B8)

where Vn are irreps of fixed charge n, each of dimension (or degeneracy) dn. Thus, any arbitrary vector
|v⟩ ∈ V can be expanded as a linear combination of |n, tn⟩ ∈ Vn vectors of fixed charge and degeneracy label
tn, where tn = 1, . . . ,dn, with dn the degeneracy of charge n. By going to this basis of well-defined charge, the
invariance condition on the tensors, (B5), translates into

Tb
a,c = (Tnb

na,nc)
tnb
tna ,tnc

δNin,Nout , (B9)

where

Nin =
∑
i∈I

ni, Nout =
∑
i∈O

ni, (B10)

where I (O) denotes the set of incoming (outgoing) indices. From (B9) we see that each tensor in the MPS
factorizes into the product of two tensors. The first one, (Tnb

na,nc)
tb
ta,tc , gives the components of tensor T w.r.t.

the degeneracy vectors {|tn⟩}, reason why this tensor goes by the name of degeneracy tensor. The second
tensor, δNin,Nout depends solely on the conservation of U(1) charge, and it is referred to as structural tensor
(for an arbitrary symmetry group G the structural tensor can take a rather nontrivial form). For fixed
physical charge (fixed nb appearing in (B9)), the resulting matrix Tb

a,c will be block diagonal, with blocks of
size dna × dnc . These blocks are sometimes referred to as QN blocks. A symmetric MPS will be in general not
only composed of invariant tensors fulfilling (B9) but also covariant tensors of well defined charge n ̸= 0 and
fulfilling ∑

a ′,b ′,c ′

(Ug)c,c ′(Vg)b,b ′Tb ′

a ′,c ′(Wg)
†
a ′,a = e−inϕTb

a,c. (B11)

Covariant tensors can be most compactly written in the basis of well-defined charge as

Tb
a,c = (Tnb

na,nc)
tnb
tna ,tnc

δNin+n,Nout . (B12)

Alternatively, we may transform a covariant tensor to an invariant tensor upon introducing an extra index
carrying charge n and of dimension 1. The charge n in a covariant tensor is also sometimes known as the flux.
For a given MPS, there is at least one covariant tensor, and this is usually taken to be located at the canonical
center of the MPS. Alternatively, we may decide to spread the total charge across different sites. It is however
preferred to concentrate all flux in one single site as it is easier for bookkeeping purposes (we do not have to
keep track of which sites have flux and which do not) and the resulting complexity (as measured by the size
of the tensors) is not affected by this choice.

Lastly, we remark that for the purposes of our work where we have multiple arbitrary equality
constraints, the above formalism still carries through. The major difference is that now we require the state to
be invariant under multiple global group transformations of the form Ug = e−i

∑
jαjn̂jϕ. Since each of the

operators n̂j acts locally on each tensor, it is straightforward to generalize the above formulas to the case of
arbitrary number of charges (i.e. translation invariance is not a requirement).

Appendix C. Exact MPS construction for assignment type problems

In section 3.2 we gave an exact construction of the MPS in the presence of a cardinality constraint. Here we
give the derivation for another widely present equality constraint in combinatorial optimization problems,
namely, an assignment type constraint. This is of the form∑

i∈A

xi = 1, (C1)
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Figure 16. Charges in an MPS in the presence of assignment type equalities. (a) One equation. (b) Two equations.

withA some set of site indices. The valid space for this constraint can be encoded in an MPS of χ= 2, with
link charges ni,R ∈ {∅,1}. See figure 16 for an illustration for a single equality. Form number of assignment
type equalities, the link charges take values in ni,R ∈ {∅,1}m, see figure 16 for an example of two equalities.
Thus at worst the bond dimension grows exponentially with the number of assignments.

Appendix D. Degeneracy counting for negative separation cost function

The negative separation cost function together with the cardinality constraint as introduced in section 5.3
has κ− 1 bitstrings with minimum cost function, which is Cmin =−N+κ− 1. This corresponds to having a
single connected block of zeros of size N−κ, with ones at each edge. For the remainder we shall refer to an
arbitrary-sized block of zeros with ones at each side as a domain wall (to connect with the statistical physics
literature). Here we wish to characterize the degeneracy (that is, number of bitstrings) for arbitrary value of
the cost function and for any system size. This will be useful as a performance benchmark of the trained
s-TNBM against our baseline which is a uniform sampler on the space of bitstrings with the right cardinality
κ. Since for large system sizes N≳ 30 it becomes numerically challenging to extract the degeneracy factors,
we aim at extracting these analytically.

The problem of counting such configurations is a straightforward problem of combinatorics. The
approach we take here is recursive. We present results for the case when there is a single dominant domain
wall, meaning one domain wall is bigger than the rest in a given bitstring (this is analogous to a low-energy
approximation above the absolute minimum when viewing the cost function as an energy function). Our
results are as follows.

Let a ∈ Z w ith 2a< N−κ, where κ is the Hamming weight (cardinality). The degeneracy in the number
of bitstrings with cost C =−N+κ+ a− 1 is given as

|S|(a,κ) =

2
∑κ+a−2

i=a

( i
a

)
+ 2
∑ a−1

2
j=1

∑κ+a−2−j
i=a−j

( i
a−j

)(
κ+a−2−i

j

)
, if a ∈ 2Z+ 1,

2
∑κ+a−2

i=a

( i
a

)
+ 2
∑ a

2−1
j=1

∑κ+a−2−j
i=a−j

( i
a−j

)(
κ+a−2−i

j

)
+
∑κ−2+ a

2
i= a

2

( i
a
2

)(
κ+a−2−i

a
2

)
, if a ∈ 2Z.

(D1)
The way to derive this result consists in a simple counting of the number of configurations of zeros at
each side of the main domain wall. In particular, for the experiment of figure 13, we have |S|(6,25)/
|S|=O(10−7), where |S|=

(50
25

)
the number of solutions of fixed cardinality.
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