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With the advent of quantum and quantum-inspired machine learning, adapting the structure of learning models
to match the structure of target datasets has been shown to be crucial for obtaining high performance. Proba-
bilistic models based on tensor networks (TNs) are prime candidates to benefit from data-dependent design
considerations, owing to their bias towards correlations which are local with respect to the topology of the
model. In this work, we use methods from spectral graph theory to search for optimal permutations of model
sites which are adapted to the structure of an input dataset. Our method uses pairwise mutual information es-
timates from the target dataset to ensure that strongly correlated bits are placed closer to each other relative to
the model’s topology. We demonstrate the effectiveness of such preprocessing for probabilistic modeling tasks,
finding substantial improvements in the performance of generative models based on matrix product states (MPS)
across a variety of datasets. We also show how spectral embedding, a dimensionality reduction technique from
spectral graph theory, can be used to gain further insights into the structure of datasets of interest.

I. INTRODUCTION

The development of increasingly powerful quantum com-
puters has placed renewed focus on the near-term potential
of quantum models and algorithms for solving problems of
significant real-world value. Probabilistic modeling, where a
model is trained to learn the structure of an unknown distri-
bution from an unlabeled dataset of samples, has emerged as
an application of particular promise for quantum methods [1],
owing to provable advantages in expressivity [2] and gener-
alization [3] arising from the distinct properties of quantum
state spaces. Within this domain, the use of quantum-inspired
tensor networks (TNs) has allowed many of the advantages of
fully-quantum probabilistic models to be enjoyed in a simu-
lated classical setting [4, 5], while also permitting the devel-
opment of hybrid quantum-classical models that exploit the
complementary properties of both model families for practi-
cal benefit [6–9].

Although promising, the relative newness of quantum and
quantum-inspired machine learning algorithms means that
best practices for ensuring optimal performance remain un-
settled. While a large amount of attention has been dedicated
to overcoming the phenomenon of barren plateaus in opti-
mization landscapes [10–12], we focus here on a less well-
understood issue, namely, the impact of the dataset’s geom-
etry on the performance of the machine-learning (ML) mod-
els. The importance of optimally matching model geometry
to the structure of probabilistic modeling problems is well-
understood in the TN community [13–15]. However, prior
proposals for ensuring this optimal matching have tended
to rely on heuristic search through various model configura-
tions [16–18], entailing a high cost due to repeated model re-
training, while also failing to make use of insights present in
the structure of the classical data itself. A notable exception
is the problem-specific solution of Barcza et al. [19], where
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spectral ordering methods were shown to be capable of im-
proving the performance of density matrix renormalization
group (DMRG) calculations within quantum chemistry prob-
lems. Recent efforts to incorporate geometric considerations
into quantum machine learning (QML), although of a differ-
ent flavor than considered here, include the works of [20–23],
where the authors incorporate geometric priors arising from
problem-specific symmetries into quantum models.
In this work, we introduce a simple method for ordering the
variables of a classical dataset to ensure an optimal match
between the correlations present in the data and the connec-
tivity of 1D quantum or quantum-inspired models. We refer
to this problem as qubit seriation, in recognition of its simi-
larity with the seriation problem of linearly-ordering sequen-
tial data, which has proven important in domains as diverse
as archaeology [24], DNA sequencing [25, 26], and natural
language processing [27]. Our approach makes use of tools
from spectral graph theory to efficiently compute an order-
ing directly from the pairwise mutual information between
variables in a classical dataset of interest, thus guarantee-
ing that strongly correlated variables are mapped to nearby
qubits, and weakly correlated variables to more distant qubits.
We demonstrate the effectiveness of our procedure in proba-
bilistic modeling experiments utilizing matrix product states
(MPS), where reordering the variables of a classical dataset
prior to optimization is shown to significantly boost the per-
formance of the trained model. We show how spectral em-
bedding tools can be used to extend these methods to mod-
els with more complex connectivities, and develop heuristics
for understanding the impact of noise or small dataset size on
the output ordering. Overall, our work emphasizes the prac-
tical importance of geometric considerations in quantum and
quantum inspired machine learning, and demonstrates the per-
formance benefits that are possible with the use of principled
approaches to solving these issues.
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II. BACKGROUND

A. Spectral Graph Theory and Mutual Information

The central object within spectral graph theory is graph
Laplacian matrices. Although there exists several varieties
of graph Laplacians, this work will focus on those based on
undirected weighted graphs, which are described using a sym-
metric weight matrix W ∈ IRn×n, whose nonnegative entries
W := (wij) specify the edge weights between the n nodes
of the corresponding graph. The (unnormalized) graph Lapla-
cian is then given by L = D − W , where D is the diago-
nal degree matrix with entries of Dij = δij

∑
jWij . The

eigenvalues and eigenvectors of the graph Laplacian can be
used to describe and study many properties of their respec-
tive graphs [28, 29]. Some important properties of the graph
Laplacian include [28]: (1) For every vector f ∈ IRn we have

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2. (1)

(2)L is symmetric and positive semi-definite. (3)L has n real,
non-negative eigenvalues 0 = λ0 ≤ λ2 ≤ . . . ≤ λn−1, with
the (trivial) eigenvector associated with λ0 being the all-ones
vector x0 = 1. (4) The number of zero eigenvalues λi = 0
is equal to the number of connected components in the graph,
such that a graph with k connected components will have λk
be the first non-zero eigenvector. In the following we will
typically assume the use of connected graphs, so that λ1 > 0.

The eigenvector associated with the first non-zero eigen-
value is referred to as the Fiedler vector, and has a cen-
tral role in many applications stemming from spectral graph
theory. One important application lies in spectral cluster-
ing [30] which uses spectral properties of the similarity graph
Laplacians. Given a dataset, the goal is to build a similarity
graph which models the local neighborhood relationships be-
tween the data points. These similarity graphs can be of var-
ious kinds such as ε-neighborhood graph, k-nearest neighbor
graphs, but our work will focus on fully connected graphs.
Once a similarity graph is established, the graph Laplacian
L can be computed from the corresponding weighted weight
matrix W . Then we can directly use the first m eigenvec-
tors stacked as columns in a matrix U ∈ Rn×m. Performing
k-means clustering in this lower-dimensional subspace leads
to an effective clustering of the original data points. Beyond
spectral clustering, we will utilize the lesser-known formal-
ism of spectral graph ordering III, which will be discussed in
Sec. III.

Our work utilizes a similarity graph based on pairwise
mutual information, which is simply the mutual information
(MI) between each pair of random variables in a distribu-
tion. The MI between variables Xi and Xj is defined as
I(Xi;Xj) = DKL(PXi,Xj

||PXi
PXj

), where DKL(P ||Q) =∑
x P (x) (log(P (x))− log(Q(x))) denotes the Kullback-

Leibler (KL) divergence. Pairwise MI is not a distance metric
between variables in a distribution, and in cases that a proper
metric is needed, one can use (for example) a variation of in-
formation. The sample complexity for estimating MI is well-

studied in the information theory literature [31], and in the
following we employ a maximum likelihood approach to esti-
mate the MI between pairs of variables based on a number of
samples from the underlying statistical distribution.

B. Tensor Networks and Born Machines

Tensor networks (TNs) are a family of models for de-
scribing large tensors ψ ∈ Cd1×d2×···×dn using smaller
tensor “cores”, which are contracted together in a man-
ner described by a defining graph G [32]. We focus on
the case of matrix product states (MPS), whose n cores
{A(i) ∈ Cχi−1×di×χi}ni=1 are contracted on a line graph
along “bonds” of dimension χi ∈ N, whose size determines
the expressivity of the model [33]. Concretely, this describes
a tensor with elements given by

ψx1,x2,...,xn
= A(1)

x1
A(2)
x2
· · · A(n)

xn
, (2)

where A(i)
xi ∈ Cχi−1×χi denotes the matrix with elements

(A(i)
xi )α,β = A(i)

α,xi,β
and the indices associated with trivial

bond dimensions χ0 = χn = 1 are taken to be x0 = xn = 1.
In the common setting where ψ describes an n-body wave-
function, ψ must be normalized to have unit Frobenius norm,
i.e. ‖ψ‖22 =

∑
x1,...,xn

|ψx1,...,xn
|2 =

∑
x |ψx|2 = 1, where

we use x = (x1, . . . , xn) to denote the collection of all n dis-
crete indices of an MPS, which in our setting will describe the
possible values of n discrete variables.

Inspired by their long-established use in simulating many-
body quantum systems, MPS have more recently been adapted
to the task of learning classical probability distributions [34,
35], where they are referred to as MPS Born machines (BMs).
Each BM over an n-core MPS defines a probability distribu-
tion over n discrete random variables, as PBM(x) = |ψx|2,
which is properly normalized iff ‖ψ‖22 = 1. The n cores
of the MPS are then optimized to minimize a loss function
measuring the compatibility of PBM with an unlabeled dataset
D = {xt}Tt=1, which is typically chosen as the negative log
likelihood loss NLL(PBM,D), defined by

NLL(PBM,D) = − 1

T

T∑
t=1

ln(PBM(xt)) (3)

= DKL(PD||PBM) + ln(T ), (4)

where PD is the empirical distribution given by PD(x) =
1/T for x ∈ D and PD(x) = 0 otherwise. Given that
NLL(PBM,D) is equal to DKL(PD||PBM) up to a constant
offset, minimizing the former is equivalent to minimizing the
latter, which encourages PBM to assign large probability to
samples xt contained in D.

Although MPS are ubiquitous in applications of TNs to
quantum simulation, machine learning, and other fields, their
1D connectivity leads to a preference for capturing structure
associated with sites i, j for which |i − j| is small. The pri-
mary reason for this preference is the limited capacity of MPS
BMs, where the value of each bond dimension χi places an
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FIG. 1. Schematic representation of our qubit seriation framework:
Training data is often not structured such that neighboring sites of
data samples are maximally correlated. However our spectral re-
ordering preserves locality, as seen in the pairwise mutual informa-
tion plots. We can see the unstructured data to the left has correlated
qubits farther from each other but after we employ spectral ordering,
the pairwise mutual information matrix has larger elements closer
to the diagonal, as seen to the right of the figure. This reordering
improves the performance of machine learning algorithms, such as
those utilizing tensor network models.

upper bound on the achievable MI between random variables
associated with sites separated by the corresponding bond.
Long-range correlations between two sites must be propa-
gated through all intermediate bonds, which leads to a greater
saturation of the capacity of the model than for short-range
correlations. At an empirical level, it leads MPS BMs to learn-
ing target distributions more rapidly, and with smaller model
sizes, when strongly correlated random variables are in close
proximity to each other relative to the line graph defining the
MPS.

III. METHODS

Qubit seriation using spectral graph ordering

We begin with an outline of a data-driven means of sequen-
tially ordering variables within a distribution, which ensures
that more strongly correlated sites are kept closer together
than more distant sites. At a high level, this method employs
a simple cost function scoring variable permutations based on
the extent of long-range correlations in the reordered data. Al-
though optimizing this cost function exactly is likely infeasi-
ble, we adopt a spectral ordering solution which uses spectral
graph theory [28] to solve a convex relaxation of this origi-
nal problem. We then develop a concrete connection between
qubit seriation and spectral ordering, which makes use of the
graph Laplacian associated with pairwise MI statistics in the
data.

For data with n sites, the ordering can be defined as the
index permutation π(1, 2, . . . , n) = (π(1), π(2), . . . , π(n)).
Each choice of ordering π acts on the weight matrix to give
a new matrix (πWπT )ij = wπ(i),π(j) expressing the MI be-
tween the permuted variables, and we aim to find a choice of
π such that larger values wi,j of the original weight matrix
are mapped to values wπ(i),π(j) such that |π(i) − π(j)| is as

small as possible, i.e., larger values in W should be closer to
the diagonal. One way of accomplishing this goal is to mini-
mize a permutation-dependent cost function Cperm(π), which
measures the extent of long-range correlations in the permuted
dataset. A straightforward choice of this cost function, which
we will see enables the application of useful previous results
on spectral ordering, is

Cperm(π) =
1

2

∑
i,j

(i− j)2wπ(i),π(j) (5)

While finding the minimum of this cost function is a combina-
torial optimization problem which likely cannot be achieved
with any polynomial-time algorithm [36], finding a low-cost
ordering is nonetheless possible by solving a convex relax-
ation of this problem. More precisely, the Fiedler vector
solves a convex relaxation ofCperm in Eq. 5, which is phrased
in terms of vectors x whose entries are continuous variables
xi ∈ [−1, 1]. Additionally, the shifting necessary in the dis-
crete variables introduces a constraint

∑
i xi = 0. The cost

function for this convex relaxations is given by

C(x) =
1

2

∑
i,j

(xi − xj)2wi,j = xTLx, (6)

where L denotes the graph Laplacian associated to the matrix
of pairwise MI values wi,j , and the second equality comes
from Eq. 1. See Refs. [25, 26] for a similar analysis in the
context of DNA sequencing.

To avoid trivial solutions, this convex relaxation requires
the additional constraint xTx = 1, which can be imposed
using a Lagrange multiplier λ. The stationary points of this
cost function occur when x is an eigenvector of the positive
semidefinite operator L. Now the cost function reads as

C ′(π) = xTLx− λ(xTx− 1), (7)

whose minimization is equivalent to minimizing the Rayleigh
quotient R(x) = xTLx

xTx
. It is straightforward to verify that the

minimization of Eq. 7 subject to the constraint
∑
i xi = 0 is

accomplished by the Fiedler vector x1.
The solution of Eq. 7, a convex relaxation of Eq. 5, yields

a vector x1, but our original goal was to identify an optimal
permutation π. The link between these two problems arises
by sorting the elements of x1 in ascending order, with the re-
sulting permutation giving a heuristic solution to Eq. 5 that is
provably optimal for certain families of weighted graphs (see
Appendix B for more information). Other ways of relaxing
the cost function of Eq. 5 exist and can be exploited for some
noisier datasets. One instance of the noise can be attributed
to the estimation of the similarity values wij from samples.
See Appendix A for a brief introduction to the relaxation us-
ing doubly stochastic matrices and the paper [25] for more
details.

IV. RESULTS

Our spectral ordering method for qubit seriation is experi-
mentally validated in three sections. In Sec.IV A we verify the
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FIG. 2. We plot the final KL divergence between the several training data distributions and trained MPS model distribution using random or
seriated feature ordering. We have data generated by a random MPS to the left, followed by samples from a 12-qubit Ising tree Hamiltonian in
the center, and finally the 4× 3 bars and stripes dataset to the right. The performance of MPS trained using data with random site ordering are
marked with gray, while the corresponding results using data with spectral ordering are marked with blue. The gray curves depict the median
over 1000 different shufflings of the original dataset, while the fluctuations over these runs are indicated by shaded regions around the plots.
In all three cases, the spectral ordering solution leads to a lower training error with greater than (99%) confidence. In the bottom row, we plot
the eigenvalues of the corresponding Laplacian.

performance improvement of an MPS-based generative model
trained on several datasets when using a spectral ordering of
the underlying random variables. In Sec. IV B we then show
how higher eigenvectors of the graph Laplacian can be used to
reveal additional structural information present in the original
dataset. Lastly, in Sec. IV C we analyze the impact of dataset
size on the stability of the ordering arising from spectral or-
dering, which can be assessed using the spectral gap of the
graph Laplacian.

A. Spectral ordering based seriation in MPS based models

We demonstrate the success of the solution to qubit se-
riation with 1D, 2D and other tree-structured data. While
training the MPS based generative model using a negative
log-likelihood (NLL) loss, we monitor the KL divergence
DKL(PD||PBM) between the training data distribution PD
and MPS distribution PBM throughout training.

Fig. 2 depicts our numerical simulations on random MPS,
the ground states of random tree-structured Ising Hamiltoni-
ans, and the bars and stripes (BAS) dataset [35, 37]. Over-
all, it appears that qubit seriation leads to a better solution
in more than 99% of the total 1000 experiments for all three
chosen datasets. A final training loss is accepted to be better
if it outperforms the randomly-ordered model’s loss by more

than a 1% margin. For a study on 1D-correlated datasets, we
sampled the distribution associated to random MPS Born ma-
chines implemented using the ITensor library [38]. It is worth
noting that the improvement for random MPS is not as signif-
icant as other datasets. This can likely be attributed to the lack
of significant gaps in the spectrum of the graph Laplacian. A
similar behavior can be seen in the data collected from the
ground state of random tree-structured Ising Hamiltonians:

H = −
∑
i,j

Jijsisj (8)

with s ∈ {−1, 1}, where importantly, not all Jij are non-
zero to retain the tree structure. In this dataset, the seriated
MPS show significantly lower KL divergence values, as well
as vastly improved variances. Lastly, in the case of the BAS
dataset, there are large gaps between the low and the inter-
mediate eigenvalues of the graph Laplacian, indicating that if
we use the eigenvector corresponding to a smaller eigenvalue
for spectral ordering, we are guaranteed to ensure an ordering
that preserves locality. This allows allow the seriated model
to closely match the BAS dataset given sufficiently large bond
dimensions, while randomly ordered models fail to learn the
BAS dataset to any meaningful extent for all bond dimensions
investigated.
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B. Spectral embedding

FIG. 3. Demonstrating spectral embedding on an Ising tree dataset.
(top): The undirected weighted graph is depicted with weights corre-
sponding to the coupling strength Jij of the Ising Hamiltonian. (bot-
tom): Spectral embedding of the sites in the data using the second
and the third eigenvectors of the MI graph Laplacian. We use the
MI statistics of 1000 bit-strings corresponding to the ground state
configurations of the Ising Hamiltonian on Sz basis. Data sites are
colored for convenience. The spectral embedding correctly recov-
ers that qubits numbered [7,8,9,5,11] are clustered separately from
[2,6,4,0,10] in terms of their relative correlations. It is important
to note that closer distance in the above embedding space indicates
stronger correlations between the corresponding variables.

While the Fiedler vector x1 encodes the optimal site or-
dering for 1D correlated data, this may not be optimal for
more complicated datasets. In such cases, we can utilize
higher eigenvectors of the MI graph Laplacian L. The sub-
space spanned by these eigenvectors can be used to obtain
the so-called spectral embedding. The utility of higher eigen-
vectors depends on the magnitude of their respective eigen-
values, where the gaps between eigenvalues typically quickly
decrease, leading to unstable representations.

As a concrete example, we construct one instance of the
Ising tree dataset, given by the ground state of a Hamiltonian
described in Eq. (8). The particular tree structure and coeffi-
cients Jij can be seen in Fig. 3. Using the spectral embedding
on the first two eigenvectors x1 and x2 , we clearly recover the
correlation structure of the ground state which closely follows
the magnitude of the Jij terms. We highlight clusters of more
closely correlated sites by coloring them in both the Ising tree

FIG. 4. We see the lessening of spectral gap (λ1 − λ2) of the nor-
malized Laplacian if we construct noisier Laplacians by using fewer
samples to estimate the pairwise MI matrix. This also means that
the Fiedler vector is not a unique vector that will seriate the qubits,
meaning that slight variations in the data will generate very different
permutations as answers to the seriation problem. The data here is
taken from a Markov chain, with the legend showing the number of
samples used to estimate the pairwise MI.

.

graph and the spectral embedding. The embedding can now
be utilized to find sparse graphs connecting all sites such that
the original full pair-wise MI graph is well-reflected.

C. Stability of the spectral solutions

The stability of the spectral ordering by the Fiedler vector
can be indicated by the spectral gap λ2 − λ1 of the Laplacian
L(W ). In general the spectral gap (λk−λk−1) is used for sta-
bility analysis when the algorithm uses the subspace formed
by k eigenvectors. If there is degeneracy in the system, then
there might be more than one optimal solutions since the so-
lutions form a degenerate subspace. It does not matter which
direction is picked within the subspace or if a more general
algorithm is employed. However, if there is no gap between
the bands of eigenvalues, then it is indicative that there will be
no benefit to the algorithm via seriation.

The spectral ordering solution is stable when the magnitude
of unstructured noise is less than the spectral gap [25].

||∆L||F ≤ (λk − λk−1)/
√

2

Note that this bound is given for an unphysical noise form
(see Appendix V). More admissible perturbations that pre-
serve symmetry and non-negativity can be studied but it goes
beyond the indication of stability one intends to use from
the spectral gap in the methods used in our work. We also
demonstrate that the sampling noise in the estimation of MI
also leads to the lessening of the spectral gap. Thus further
leading to an unstable or less useful solution to seriation (see
Fig. 4). Further details can be found in [39], where the authors
perform a similar analysis of stability but for closely related
spectral clustering problems. We present a proof and inter-
pretation of these results in more detail while also noting the
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special cases which lead to stronger guarantees on the spectral
solution to seriation.

V. CONCLUSIONS

In our work, we apply spectral graph theory methods for
qubit seriation in tensor network based generative models.
Given a dataset, we first used an estimate of the pairwise MI
between variables to construct a similarity graph Laplacian.
We showed how a sorting method based on the lowest non-
trivial eigenvector, the Fiedler vector, could be used to im-
prove the performance of trained generative models, which in
principle may be either 1D quantum or quantum-inspired al-
gorithms. We further identified how higher non-trivial eigen-
vectors of the data-dependent graph Laplacian can be used to
obtain further insights into the underlying dataset.

While we demonstrated improved training performance us-

ing MPS, other models can also benefit from this. Concretely,
clustering algorithms on the spectral embedding of data can be
used to design TN architectures and quantum circuit ansätze
for ML tasks that are specific to each given dataset. Given
that most negative results are derived using uninformed and
generic architectures, we are optimistic that our work can lead
to improvements in model-data compatibility. We can also
leverage the benefits of seriation in generative modeling tasks
by classical ML models such as recurrent neural networks and
its variants, using the fact that sequential learning is sensitive
to data ordering [27].
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Appendix A: Spectral ordering

We are trying to insure that after the data has been ordered,
the adjacent qubits are similar where as the distant qubits are
less similar. The ordering can be defined as the index per-
mutation π(1, 2, ...n) = (π(1), π(2), ...π(n)). The permuted
mutual information matrix is (πWπT )ij = wπ(i),π(j).

The cost function can then be written asC(π) = 1
2

∑
i,j(i−

j)2wπ(i),π(j). Using the permutation substitution i.e. i →
π−1(i) which results in the replacement π(i)→ i, we get the
expression

C(π) =
1

2

∑
i,j

(π−1(i)− π−1(j))2wi,j

To further simplify the cost function, one can shift the terms
as follows. (π−1(i) − c − (π−1(j) − c))2. Since

∑
i π(i) =

n(n+1)
2 , we can use cn = n(n+1)

2 =⇒ c = (n+1)
2 .

C(π) =
n2

8

∑
i,j

(xi − xj)2wi,j

xi =
π−1(i)− (n+ 1)/2

n/2
s.t.

∑
i

xi = 0

We can finally rescale the terms since it doesn’t change any-
thing to our optimal solution i.e. the permutations. After scal-
ing appropriately, we can enforce an additional condition on
the scaled x in order for it to satisfy xTx =

∑
i x

2
i = 1. Note

that, so far we are trying to find the optimal solution for the
discrete values of x and it is in fact a combinatorial optimiza-
tion problem known to be hard [36]. The new cost function in
terms of the rescaled and shifted variables which we still call
x can be written as

C(π) =
1

2

∑
i,j

(xi − xj)2wi,j

s.t.
∑
i

xi = 0,
∑
i

x2
i = 1

Where the possibilities of xi are still discrete and come
from a scaled version of π−1(i)−(n+1)/2

n/2 . However, we can
secretly invoke the quadratic laplacian form by following the
steps below.

C(π) =
1

2

∑
i,j

(x2
i + x2

j − 2xixj)wi,j

(A1)

=
1

2
(
∑
i

x2
i

∑
j

wi,j − 2
∑
i,j

xixjwi,j +
∑
j

x2
j

∑
i

wi,j)

(A2)

=
1

2
(2

∑
i

x2
i

∑
j

wi,j − 2
∑
i,j

xixjwi,j)

(A3)

= (
∑
i

x2
i di −

∑
i,j

xixjwi,j)

(A4)

= xT (D −W )x
(A5)

We used the definition of the Degree matrix D = diag({di})
i.e. di =

∑
jWij where W can be read as the adjacency ma-

trix leading to the graph laplacian L = D − W . Since the
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problem is still discrete, minimizing this along with the con-
straint that

∑
i xi while maintaining

∑
i xi = 0 is hard. How-

ever, we can relax this condition by letting xi be continuous
and xi ∈ [−1, 1]. See [25], [26] for a similar analysis that was
intended for applications in DNA sequencing. We can add a
lagrange multiplier for the second condition i.e. xTx = 1.
The cost function reads as

C(π) = xTLx− λ(xTx− 1)

This is identical to writing the Rayleigh quotient for L and x
and then minimizing it. R(L, x) = xTLx

xTx
, and the stationary

points of this cost function occurs when x is the eigenvector
of the positive semidefinite operator L. Hence optimality is
when Lx = λx and R(L, x) = λ. The lowest eigenvalue of
the laplacian is always λmin = 0 with the eigenvector being
the x0 = (1, 1, ..., 1)T . Since L is positive semi-definite, we
have λn−1 ≥ λn−2 ≥ λn−3... ≥ λ0. The next n−1 eigenvec-
tors are orthogonal to x0 which then satisfied the

∑
i xi = 0

condition trivially as it can be read as xTx0 = 0. This helps
us in identifying that the x1 minimizes the cost function while
maintaining the constraints. And the n components of the sec-
ond smallest eigenvector of the graph Laplacian will provide
us with the permutations needed to order the qubits respecting
the condition that nearby qubits will have more similarity [28].

There are alternative convex relaxation techniques which
are useful to provide stable solutions with specific datasets. It
uses Sn the set of doubly stochastic matrices, i.e. Sn = {X ∈
Rn×n : X > 0, X1 = 1, XT1 = 1} which is the convex
hull of the set of permutation matrices. We can recover the
permuation matrix by imosing orthogonality conditions Π =
S ∩ O, i.e. a matrix is a permutation matrix if and only if it is
both doubly stochastic and orthogonal. The fact that LA � 0
means that we can directly write a convex relaxation to the
combinatorial problem (5) by replacing � with its convex hull
Sn, to get

minimize gTXTLAXg
subject to X1 = 1, XT1 = 1, X ≥ 0,

(A6)

where g = (1, . . . , n), in the permutation matrix variable
X ∈ Π. By symmetry, if a vector Xy minimizes (A6), then
the reverse vector also minimizes (A6). Since this has a sig-
nificant negative impact on the quality of the relaxation, the
authors [25] added the linear constraint eT1 Xg + 1 ≤ eTnXg
to break symmetries, which means that solutions where the
first element comes before the last one is always picked.

Appendix B: Stability of spectral solution

Exact solution: If the underlying similarity matrix is a
pre-R matrix (named after W.S. Robinson [24] who defined
the property of these matrices, then spectral ordering can be
used [26]. A matrix is a R-matrix if it satisfies a simple con-
dition stating that wi,j ≤ wi,k for j < k < i and wi,j ≥ wi,k
for i < j < k. The mutual information matrix will be a pre-R
matrix iff there exist a permutation π such that πWπT is a R
matrix. The coefficients ofW decrease as we move away from

the diagonal. This basically leads to a guaranteed monotonic
Fiedler vector. [26]

Low noise and inside perturbation regime: We also discuss
the stability of solutions where the underlying matrix does not
have the above properties. The spectral ordering solution can
be shown to be stable when there is a significant spectral gap.
Further understanding of this is supported by the following
analysis where we begin by diagonalizing L = OΛOT , where
Λ = diag(λi) and the orthogonal matrix O constitutes eigen-
vectors. Let us construct Lin = OΛinO

T where “in” is short
for interpolated. While all the eigenvalues are the same except
for λk = λk+1 = 1

2 (λk +λk+1), e.g. λ2 = λ3 = 1
2 (λ2 +λ3).

This is how the algorithm can fail to generate stable solution,
since two different directions (associated with the eigenvec-
tors of the Laplacian) can now minimize the ordering objec-
tive function: If the system is actually degenerate, then we will
have to take the degenerate subspace. It doesn’t matter which
direction is picked within the subspace or if a more general al-
gorithm is employed. However, if there is no gap between the
bands of eigenvalues, then it will in many cases lead to the ap-
plication not bringing any advantage. Since the cost function
Eq. (6) isn’t getting lowered by the spectral solutions.

‖L− Lin‖2F = ‖Λ− Λin‖2F =
1

2
(λ3 − λ2)2. (B1)

‖..‖F =
√∑

i,j l
2
i,j denotes the Frobenius norm. The final

piece of the puzzle lies in taking an arbitrary matrix L̂ with
ordered eigenvalues with λ̂2 = λ̂3. 1

2 (λ2−λ3)2 = min
λ

((λ2−

λ)2 + (λ3 − λ)2) ≤ ((λ2 − λ̂)2 + (λ3 − λ̂)2. Here, we can
use the Hoffman-Wielandt theorem to show

∑
i(λi − λ̂i)2 ≤

‖L− L̂‖2F and thus finally we get

1

2
(λ3 − λ2)2 ≤ ‖L− L̂‖2F . (B2)

It is useful to work out the sketch of proof of the Hoffman-
Wielandt theorem as it has hints towards using more noise
robust algorithms for the ordering problem.

Since symmetric matrices are diagonalizable by orthogonal
matrices, we can write L = OΛOT and L̂ = UΣUT with
OOT = UUT = 1I.

Frobenius norm for symmetric matrices simplifies as
‖A‖2F = Tr(AAT ) = Tr(A2). The theorem can be written as
the following inequation.

Tr((Λ− Σ)(Λ− Σ)T ) ≤ ‖L− L̂‖2F (B3)

Tr((Λ− Σ)2) ≤ Tr((OΛOT − UΣUT )2) (B4)

Expanding the square leads to elimination of terms, and we
are left to show Tr(ΛOTUΣUTO) ≤ Tr(ΛΣ). We can in-
troduce a shorthand X = OTU to show this. The brute force
approach is to maximize Tr(ΛXΣXT ) with the orthogonality
constraint XXT = 1I. We can use lagrange multiplier Λl (a
matrix here), to write the objective as

C = Tr(ΛXΣXT )− Tr(Λl(XX
T − 1I)) (B5)
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While ∂C
∂Λl

yields the orthogonality constraint. Setting
∂C
∂X = 0 reveals more.

∂C

∂X
= 2ΛXΣ− (Λl + ΛTl )X = 0

Since Tr(ΛlXX
T ) = Tr(ΛTl XX

T ), we can use ∂C
∂X = 0

to find the optimal value of C i.e. C̄ = Tr(ΛXΣXT ) −
1
2Tr((Λl + ΛTl )(XXT − 1I)) = 1

2Tr(Λl + ΛTl ).

Appendix C: Algebraic connectivity

Algebraic connectivity has been used to indicate the trans-
mission throughput of a grid quantum network [40]. However,
there is also a connection that can be seen between the alge-
braic connectivity of the graph Laplacian constructed using
mutual information as a similarity measure between distribu-
tions lying on qubits with the amount of entanglement present
in the quantum state. As a numerical experiment, we show the
relationship with algebraic connectivity and the bond dimen-
sion in a random matrix product state. As the bond dimension
increases, indicating a higher entanglement strength, unsur-
prisingly, we do get the λ2 to increase as well. We compute

the spectrum and the second smallest eigenvector of the nor-
malized laplacian D−

1
2LD−

1
2 .

FIG. 5. Algebraic connectivity (the first non-zero eigenvalue) against
inceasing bond dimension. Here, we take 1000 samples from random
MPS with varied bond dimension, estimate pairwise mutual informa-
tion and then plot the second eigenvalue of the graph laplacian. This
indicates that the connectivity increases with increase of entangle-
ment in the quantum state.

We can better understand the behaviour of the connectivity
of the graphs formed out of 2-point mutual information by
monitoring it for varied amount of noise strengths.
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