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We present a practical workflow to compute the potential energy curve of
the hydrogen molecule on near intermediate-scale quantum (NISQ) devices.
The proposed approach uses an extrapolation scheme to deliver, with only
few qubits, full configuration interaction results close to the basis-set limit.
We show that despite the limitations imposed by the noisy nature of simu-
lated quantum hardware, it is possible to recover realistic electronic correla-
tion values, if we also estimate expectation values of the Hartree–Fock ground
state energy. Using two models of noisy quantum experiments, we evaluate
the performance of a scheme that requires at most a double-zeta basis set (3-
21G, in this case) and compare with the most accurate Born–Oppenheimer
potential energy curves available in the literature. Our flexible approach is
implemented using simple variational ansatzes combined with straightforward
mitigation techniques and thus we expect it to be also suitable for other energy
estimation quantum schemes.

1 Introduction
Current quantum computing hardware is able to perform very elaborate quantum opera-
tions on an increasingly large number of qubits. Yet, the applications of quantum comput-
ing to quantum chemistry calculations remains more a curiosity than a mass phenomenon.
This is mainly due to the difficulty in performing operations on a large number of qubits
since many complex gates and high circuit depth are required to perform useful chemical
simulations that can rival classical computations.

Hybrid approaches such as the variational quantum eigensolver (VQE) [Peruzzo et al.,
2014] have shown impressive results when modelling electronic structure on quantum com-
puters and thus this algorithm has become a de-facto standard [Claudino et al., 2020,
Elfving et al., 2020]. However, for large chemically-relevant systems, the wave function
description (triple or quadruple zeta basis sets) and qubit requirements remain too high
for most Noisy Intermediate-Scale Quantum (NISQ) devices. As a result, there has been
many adaptations of the VQE algorithm to improve both circuit depth and noise reduction
(see Jouzdani and Bringuier [2020], Kottmann et al. [2020] or Benfenati et al. [2021], for
example) - nevertheless most demonstrations remain limited to “toy" systems. Indeed, a
true quantum advantage can only really be achieved by producing results that are useful to
the quantum chemistry community and potentially more difficult to obtain on a classical
computer than a quantum one.
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One particular issue of current VQE demonstrations is the sub-minimal basis set used to
describe the molecular wave function. In a recent paper, Elfving et al. [2020] highlight that
a computation on the hydrogen molecule which begins to approach chemical accuracy would
require 56 spin-orbitals in its molecular wave function (cc-pVTZ basis set) or 56 qubits.
Although the actual number of necessary qubit depends on the specific implementation of
the algorithm and can be lowered slightly using parity, symmetry operations and tapering
[Bravyi et al., 2017]. To be chemically meaningful, most other molecules would require
much larger wave functions combined with extrapolation schemes.

In the present study, we embrace the limitations of quantum computing and instead
seek to use the relatively low level basis sets to extract information on the electronic corre-
lation that VQE can estimate and use it to reconstruct high-quality results. This approach
is already used commonly (albeit with larger basis sets) in quantum chemistry to obtain
reliable estimates of the basis-set limit (also called complete basis set limit, CBS, corre-
sponding to an "infinitely flexible" wave function). A recent paper by Varandas [2018]
demonstrated how to use this approach for sub-minimal basis sets on classical computers,
if appropriate care is taken in computing a suitable extrapolation function.

In the present study, we explore two aspects of the quantum computation of electronic
structure:

1. we apply a dual-level basis set approach to high-accuracy electronic structure calcu-
lations using two types of NISQ device simulations and use this approach to obtain
an accurate dissociation curves for the H2 molecule. Those curves are compared to
existing benchmark results by Sims and Hagstrom [2006] for H2, obtained on classical
computers.

2. We develop suitable mitigation techniques that include using "internal standards"
and an analytical representation of electronic correlation to minimise the impact
of noisy measurements on our proposed approach. This proposed workflow aims
to provide a practical blueprint for the determination of smooth and high-accuracy
potential energy surfaces.

This paper is organised as follows: in Sec. 2, we present the dual-level basis set approach
used throughout this study, followed by a detailed description of the computational details
of our quantum simulations in Sec. 3. We present our first set of results in Sec. 4 and
compare our results to the latest available literature data. In Sec. 5, we explore the
application of our approach to a more realistic noisy model of a quantum device and derive
a suitable workflow for actual NISQ systems. Finally, we present our conclusions in Sec. 6.

2 Method
Highly accurate electronic structure calculations on molecular systems is often a trade-
off between description of the electronic correlation used (i.e. ranging from mean-field
Hartree–Fock theory to full configuration interaction, FCI, with many useful approximate
treatments in between) and the size of the basis set employed to represent the molecular
wave function. One convenient way of approaching the problem is to use an incremental
approach, both for electronic correlation and the basis set expansion. This has lead to vast
progress over decades and has enabled large-scale, yet accurate, calculations for a number
of systems [Bakowies, 2007, Boschen et al., 2017, Dunning, 1989]. In this study, we focus
on the highest level of electronic correlation, i.e. FCI as it provides a numerically exact
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solution to the Schrödinger equation. The formal factorial computational scaling of FCI in
terms of molecular size limits its applications, but can be implemented in a straightforward
manner on quantum computers. In this work, we use a variational quantum eigensolver
(VQE) approach with a unitary coupled-cluster (UCCSD) anzatz [Peruzzo et al., 2014]
and a hardware-optimised ansatz [Kandala et al., 2017] to obtain the FCI ground state for
the electronic Hamiltonian expressed in second-quantisation formalism (see also Sec. 3 for
details).

The second aspect of the calculation, namely the limited size of the electronic basis set,
is usually side-stepped by performing a number of similar calculations using increasingly
larger basis sets. Indeed, Dunning [1989] developed hierarchic basis sets, where each each
angular momentum component is individually saturated, and organised them in increas-
ing order of cardinality (2 for double-zeta, 3 for triple-zeta, etc). They showed that the
correlation energy follows an exponential curve as a function of cardinal number, as this
number can be identified with Lmax, the maximum angular momentum quantum number
of the basis set [Halkier et al., 1998]. This approach has been used extensively in the
literature on classical computers to estimate the complete basis-set limit (or CBS limit)
for both correlated and Hartree–Fock calculations (see Dunning [1989] and Jensen [2005],
for example).

Yet, the smallest basis set used in a Dunning-type CBS expansion is typically a double-
zeta basis set (often cc-pVDZ, [Dunning, 1989]), which would already require on the order
of 20 qubits on a quantum computer for a molecule such as H2. The next step in this
expansion for H2 would be a triple zeta basis set (typically cc-pVTZ, [Dunning, 1989])
which requires a staggering 56 qubits, as stated in the introduction. This implies that even
the smallest Dunning-type extrapolation would require a very large quantum computer,
let alone mitigating the error accumulated due to the resulting VQE circuit depth.

However, over the past few years, there has been a “revival" of low-cost methods that
typically use much smaller basis sets - e.g. minimal or sub-minimal basis sets. The pre-
dictions of these models are usually dramatically improved with the addition of simple
empirical corrections. This effort has been spearheaded by the Grimme group with the
advent of the HF-3c approach [Sure and Grimme, 2013] and followed by other similar tech-
niques [Brandenburg et al., 2018, Grimme et al., 2015]. Recently, Varandas [2018] created a
bridge between the world of large basis set extrapolation and that of low-cost sub-minimal
basis sets, by suggesting an extrapolation method that uses effective cardinal numbers
instead. This new development enables the use of CBS extrapolation with much smaller
basis sets and thus potentially offers a way to harness the FCI capabilities of quantum
computing even on today’s NISQ devices. This is what we explore in the present study.

2.1 Basis set extrapolation
We define the correlation energy Ecorr as the difference between the fully-correlated energy
(FCI in the present case) and the mean-field energy obtained through a Hartree–Fock (HF)
calculation:

Ecorr = EFCI − EHF (1)

In this study, we extrapolate the Hartree–Fock energy using an exponential expression
and HF results obtained with Jensen’s PC-n basis set [Jensen, 2001]. This is performed on
a classical computer and uses cardinal numbers 2, 3, 4 and 5 (in other words: pc-1, pc-2,
pc-3 and pc-4 basis sets). The extrapolation formula used for this is given by [Jensen,
2005]:

EHF(Lmax) = EHF
∞ +B exp(−C · Lmax) (2)
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Where EHF(Lmax) is the Hartree–Fock energy obtained with a basis set of largest angular
momentum Lmax, EHF

∞ is the complete basis set (CBS) estimation of the Hartree–Fock
energy and B and C are fitting coefficient. This extrapolated HF energy enables us to
estimate the "exact" correlation energy by subtracting EHF

∞ from the numerical results
of Sims and Hagstrom [2006] for H2. The extrapolated HF energy also serves as a zero-
approximation for the construction of our energy curves.

The correlation energy is then computed using FCI calculations performed with two
minimal basis sets on a simulated NISQ device combined with the extrapolation procedure
suggested by Varandas [2018]:

Ecorr
∞ = Ecorr

B + x−3
B

x−3
A − x

−3
B

(Ecorr
B − Ecorr

A ) (3)

where Ecorr
∞ is the CBS estimation of the correlation energy. Ecorr

i is the correlation energy
obtained with basis set i and xi is the effective cardinal number for basis set i (taken from
the averaged values of Table 2 in Varandas [2018]). Finally, A and B are the different
minimal basis set used, with basis set B being a larger basis set than A.

The CBS-extrapolated total energy, E∞(r), along the dissociation curve is then com-
puted using:

E∞(r) = EHF
∞ (r) + Ecorr

∞ (r) (4)

for each inter-nuclear distance r.

2.2 Quantum calculation methodology
Following the method outlined above (Sec. 2.1), we use a classical computer to compute the
values of EHF

∞ (r), as this is a computation that is fast and typically of O(N3) complexity
(depending on implementation, see [Echenique and Alonso, 2007] for a review). We then
use a NISQ device to compute the values of Ecorr

∞ (r) at FCI level using two small minimal
basis sets, thus keeping the number of qubits needed small. Our choice for this study is
basis sets from the MINI family [van Duijneveldt, 1971] and the 3-21G basis set [Binkley
et al., 1980],

which keep qubit count to a minimum (4 qubits for MINI and 8 qubits for 3-21G,
but this can be lowered to 2 and 6 after parity-reduction mapping, for example). Those
calculations are performed using the VQE approach [Peruzzo et al., 2014], where we first
construct an electronic Hamiltonian in second-quantisation formalism and translate it to
qubit operations using a Bravyi–Kitaev transformation [Seeley et al., 2012], before per-
forming a classical optimisation of the variational ansatz. More details are given in Sec. 3
below.

3 Computational Details
In order to construct the potential energy (or dissociation) curve for H2, we perform the
same series of classical/quantum computations at fixed inter-nuclear distances, r. The
results are then combined using Eqns. 2, 3 and 4 to generate the curves discussed in the
results sections.

3.1 HF extrapolation details
We use the least-square fitting routines implemented in the SciPy python package [Vir-
tanen et al., 2020] to fit Eq. 2 to results obtained using the 4 different basis sets discussed
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in Sec. 2.1, namely pc-1 to pc-4. All HF calculations for this extrapolation are performed
using the orca 5.0.1 package [Neese, 2012] on a classical computer. We also estimate the
error on EHF

∞ (r) as 1 standard deviation (1σ) of the fitting parameter.

3.2 Correlation energy calculation
The psi4 package [Turney et al., 2012] is used to compute the one- and two-body integrals
(hij and hijkl, respectively) needed to build a fermionic Hamiltonian within the Born–
Oppenheimer approximation and expressed in a second-quantisation formalism as:

Ĥelec(r) =
∑
i,j

hij â
†
i âj +

∑
i,j,k,l

hijklâ
†
i â
†
j âkâl (5)

where â†i and âi represent the creation and annihilation operators of the molecular spin-
orbital i.

Note that the MINI and 3-21G basis sets both use Cartesian primitives orbitals. While
the 3-21G basis set is standard, the MINI basis was added manually to psi4 using data
obtained from the EMSL database [Feller, 1996, Pritchard et al., 2019, Schuchardt et al.,
2007].

The correlation energy estimate for each basis set, x, at a given inter-nuclear separation,
r, is then computed using:

Ecorr
x (r) = EFCI

x (r)− EHF
x (r) (6)

where the FCI energy, EFCI
x , for basis set x, is obtained through either a quantum VQE

computation or a reference classical calculation. The HF energy is directly extracted from
the psi4 results during the generation of the second-quantisation Hamiltonian.

All classical FCI reference values for both MINI and 3-21G energy curves are computed
on a classical computer using the full configuration–interaction code implemented in psi4.

3.3 Quantum computing simulations
In order to assess the applicability of our approach, we perform a two types of noisy sim-
ulations using the Orquestra software from Zapata Computing Inc. [Zapata Inc., 2021].
The operators described in Eq. 5 are mapped to Pauli operators using the Bravyi-Kitaev
transformation [Bravyi and Kitaev, 2002, Seeley et al., 2012] and implemented as quantum
circuits. For the first set of simulations, describe the correlated electronic wave func-
tion using a singlet unitary coupled-cluster single and double (UCCSD) ansatz [Taube and
Bartlett, 2006]. This ansatz is generated using the OpenFermion library [Google Inc., 2022]
and then optimised using a VQE approach, where we use the modified Powell optimisation
algorithm [Powell, 1964, Press et al., 2007] implemented in the SciPy python [Virtanen
et al., 2020] library. We perform this first set of noisy simulations using a generic noise
model implemented in IBM’s QasmSimulator from the Qiskit library [Sajid Anis et al.,
2021].

A second, more realistic set of noisy simulations is performed using IBM’s Qasm-
Simulator along with a detailed model of 7-qubit IBM Jakarta (ibmq_jakarta) device,
accounting for coupling maps, basis gates, specific qubit noise and error. The noise profile
from ibmq_jakarta was collected on 20 June 2022 at 19:21:52 UTC and kept unchanged
throughout the simulations. We mitigate error in the simulated values using a standard
readout correction.

In order to be able to run the calculations on a 7-qubit machine model, we adapt the
approach of the first set of calculations as follows. First, we implement a Bravyi-Kitaev
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version of parity mapping which removes two qubits [Bravyi et al., 2017], requiring to 2
qubit for the MINI basis set calculations and 6 qubits for the 3-21G basis set calculations.
Second, we use a hardware-efficient ansatz described in Benfenati et al. [2021], instead of
UCCSD, to reduce as much as possible the depth of the ansatz circuit. Third, we also
introduce a simulation of the Hartree–Fock state as a means to mitigate measurement
noise further. Details of both hardware ansatz specifications and related HF simulation
are discussed in section 5.

All expectation values used for ansatz optimisations through the VQE procedure are
obtained through averaging of 8192 samples (shots).

3.4 Result central tendency and variance estimation
In order to capture a suitable central tendency for our VQE experiments, we repeat each
experiment 8 times and use the mode or the median of the distribution instead of the
mean. Indeed, since we are using 8 duplicates for each inter-nuclear separation, r, this
technically is only a small statistical ensemble and in such cases, Dean and Dixon [1951]
recommend not to rely on the mean for central tendency. Both median and mode have the
advantage of being resilient to the presence of outliers and for skewed statistics. Moreover,
in a symmetric (normal) distribution the mode and median correspond to the mean.

For the first set of noisy measurements, we compute each sample mode using the half-
sample mode approach which provides a robust estimate even for a small sample. The
variance of the computed mode is estimated using a Gaussian-kernel density estimation
(KDE) smoothed bootstrap approach, following the suggestions of Romano [1988] and
Hedges and Shah [2003]. We typically use 10,000 mode estimations from our bootstrap
sample and compute the 16-84 percentiles as proxy for a 1σ deviation.

We also explore the simpler approach outlined by Dean and Dixon [1951] for our second
set of more realistic noisy measurements that include a NISQ model. In this approach,
we use the median only as a measure of central tendency and the standard deviation is
estimated by a suitably weighted range (σ = 0.35 · range for 8 observations).

We see in practice that both mode/boostrap and median/range approaches lead to
similar results, with the second technique being slightly less computationally demanding.

4 Generic noise simulations
4.1 Potential energy curves
The VQE results obtained for the potential energy curve of H2 using the smallest basis set
(MINI) and the largest basis set (3-21G) are shown in Fig. 1 (numerical values are available
in the supplementary information section). We also report the results of the classical FCI
calculations as reference.
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Figure 1: Potential energy curves for the H2 molecule as a function of H–H separation obtained through
VQE simulated experiments for the MINI (diamond) and 3-21G (circles) basis sets. Classically computed
curves at the FCI level are also provided for each basis set. The shaded violin plots show the distribution
of VQE results for each distance/basis set combination (gray shading: MINI, blue shading: 3-21G). The
symbol indicates the mode for each series of experiment, along with a bootstrapped 16-84 percentile
estimation of 1 standard deviation (see text for details).

We see that within 1σ confidence limits, the results from the VQE calculations follow
the reference curve well. For the smaller MINI basis, the points show enough differentiation
between the energies at each distance that they define a curve suitable for further use in
vibrational calculations, molecular dynamics or geometry optimisations, for example.

We note however a significant scatter of the VQE results at each inter-nuclear distance,
which is more significant for the larger 3-21G basis set. This is likely caused by the
larger number of qubits needed for this basis set and the resulting increase in depth and
complexity of optimising its UCCSD ansatz.

The total energies shown in Fig. 1 all contain a significant proportion of Hartree–Fock
energy, which is computed classically. A more stringent test of suitability is to compare the
correlation energy component of the total energy obtained through VQE with the reference
correlation at FCI level computed classically. Those results are shown in Fig. 2.

We see, here again, that the VQE results follow closely the reference curves for each
basis set, albeit with more scatter for the larger 3-21G basis set. Nevertheless, we see that
the agreement with the exact curve is good within a 1σ confidence interval.
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Figure 2: Electronic correlation energy curve for the H2 molecule as a function of H–H separation
obtained through VQE simulated experiments for the MINI (diamond) and 3-21G (circles) basis sets.
Classically computed curves at the FCI level are also provided for each basis set. The shaded violin
plots show the distribution of VQE correlation energies for each distance/basis set combination (gray
shading: MINI, blue shading: 3-21G). The symbol indicates the mode for each series of experiment,
along with a bootstrapped 16-84 percentile estimation of 1 standard deviation (see text for details).

4.2 Hartree–Fock energy curve
Following Eq. 4, the potential energy curve at the basis set limit can be constructed by
combining a Hartree–Fock (HF) curve obtained for the basis set limit with the extrapolated
correlation energy from the two FCI calculations. The basis set limit HF curve (obtained
classically using Eq. 2) for H2 is shown in Figure 3, along with HF curves obtained with
the MINI and 3-21G basis sets. We estimate the error bars for the extrapolated HF values
using the standard deviation error from the fit of expression 2 to the computed HF data.
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Figure 3: Hartree–Fock (HF) energy curve computed for H2 extrapolated to the basis set limit using
Jensen’s pc-1, pc-2, pc-3 and pc-4 basis sets and Eq. 2. The classical HF curves computed with both
MINI and 3-21G basis sets are shown for reference. We also include the HF limit value computed by
Mitin [2000] using a 76-term basis set at the equilibrium radius for H2 (re = 1.4 bohrs or 0.7408481 Å).
Inset shows that our extrapolated curve agrees with the available reference data within error bars.

Overall the mean error for our extrapolated HF results is 57 µH (or 12.5 cm−1) over the
whole curve. The largest error occurs in the dissociation part of the curve, above 1.5 Å, (up
to 232 µH) but the estimated error in the binding region (0.6 – 1.0 Å) remains lower than
35 µH (7.6 cm−1). We note that our HF basis-set limit curve is a huge improvement over
the MINI HF curve and a noticeable improvement over the 3-21G HF curve. Moreover, our
HF results are in excellent agreement with the reference value of Mitin [2000], obtained with
a 76-term basis set in a variational calculation (within 1σ, see inset on right of Fig. 3).
However, all curves lead to a nonphysical dissociation limit due to the lack of explicit
electronic correlation of restricted Hartree–Fock.

4.3 Electronic correlation curve
In order to determine the second component of Eq. 4, namely Ecorr

∞ (r), we use the VQE
values obtained earlier to compute the correlation energy from each MINI and 3-21G basis
sets (see also Fig. 2) and combine those using Eq. 3 to obtain an estimate of the correlation
energy at the basis set limit. Our estimated correlation energy is shown in Fig. 4, along with
the "exact" correlation energy obtained by subtracting EHF

∞ (r) from the fully correlated
curve of Sims and Hagstrom [2006]. Note that the latter curve is currently one of the most
accurate fully-correlated Born-Oppenheimer data for H2, with only that of Pachucki [2010]
providing a slightly higher level of accuracy. Indeed, the Sims and Hagstrom [2006] results
were obtained using a 7034-term wave function in a fully variational calculation. The
approach used by Pachucki [2010] is similar but uses a larger 22,363-term wave function.
These latter results provide a slight improvement over the Sims and Hagstrom [2006] curve
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but only on the scale of 10−12 Hartrees, which is well below chemical accuracy.
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Figure 4: Electronic correlation energy curve for the H2 molecule as a function of H–H separation.
The extrapolated correlation energy is obtained through Eq. 3 (square symbols), based on the VQE
correlation energies obtained using MINI and 3-21G basis sets (see also Fig. 2). Classically computed
correlation energies at the FCI level are also provided for both MINI and 3-21G basis sets and extrapo-
lation thereof, along with the "exact" correlation energy derived from the data of Sims and Hagstrom
[2006] (purple line). The symbol indicates the mode for each extrapolation and the error bars indicate
a Monte-Carlo 16-84 percentile estimation of 1 standard deviation (see text for details).

First of all, we see from Fig. 4 that the extrapolation procedure performed on the
classical FCI correlation data (dash-dotted blue line) leads to correlation estimates that
are very close to the exact values (purple line). Indeed, the extrapolation improves on both
MINI and 3-21G description by correctly reproducing the change in correlation situation
as the molecule dissociates (after around 1.6 Angstroms).

We also see that our VQE estimates mirror the classical data, but show significant
deviation in places, mainly due to the correlation energy estimates obtained for the larger
3-21G basis set. At this stage it is useful to keep in mind that we use a simple UCCSD
ansatz, with little to no optimisation of either qubit or gate count in our calculations
and thus improved estimator techniques are likely to lead to results that are closer to the
classical estimates.

Varandas [2018], in his paper, provides three of values for xi for a given basis set: an
MP2 value, a CCSD(T) value and an average value. In this work, we focus mainly on
high-level correlation methods (i.e. FCI) which is not technically described in the paper
(albeit CCSD(T) admittedly can be close to FCI for some systems). Therefore, it seems
appropriate to use the average values suggested by Varandas [2018] (〈xMINI〉 = 1.450 and
〈x3-21G〉 = 1.637), as they cover a more generic correlation situation and provide a robust
extrapolation by removing one source of error.

We observe in Fig. 2 that the data follows an asymmetric distribution which is quite
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marked for the 3-21G VQE experiments and slightly less so for the VQE MINI experiments.
This non-normality can create further complications for error/variance determination, as
most statistical approaches usually assume a symmetrical error distribution.

An alternative estimation of the variability for the extrapolated values can also be ob-
tained by performing a Monte-Carlo (MC) simulation of the data distribution for Ecorr

xi

and gather statistics on the outcome of Eq. 3. Essentially, this corresponds to exploring
the variability space of the extrapolated data, given a known variability of the VQE re-
sults. The resulting MC data can then be used to construct a 16-84 percentile interval
which is comparable to the 1σ deviation commonly used to describe variability for normal
distribution (example python code provided in supplementary information).

Note that the Monte-Carlo procedure is typically very stable and depends only weakly
on the simulation conditions used. In this work, we use a random draw of 10,000 random
variates, sampled from the distributions of errors obtained from the previous section. The
error bars obtained are large but likely provide a realistic estimate of the true error on the
extrapolated correlation values.

4.4 Full energy curve
By combining the results obtained from the extrapolated HF curve (see also Sec. 4.2) with
the electronic correlation estimates from the previous section (Sec. 4.3), we can obtain an
estimate of the total potential energy curve for H2. The resulting curve is shown in Fig. 5,
along with the reference curve of Sims and Hagstrom [2006].

Here again, since the correlation error is intrinsically asymmetric, we cannot use a
simple combination rule for the two errors (HF and correlation error) to obtain the error on
our combined curve. The unsuitability of a simple quadratic error formula for asymmetric
errors has been extensively discussed in Laursen et al. [2019] and Barlow [2003]. Here, we
use the approximate procedure of Barlow [2003] which has been implemented in python
by the lead authors of Laursen et al. [2019]1.

Overall, we see that the correlation estimates essentially dominate the quality of the
curves obtained. We observe relatively small error bars for the 3-21G VQE total energy
calculations, but this basis set produces results that are far from the exact FCI values.
A slightly better approximation is to extract the correlation energy from the 3-21G VQE
experiments, Ecorr,VQE

3−21G (r), and replace the 3-21G HF contribution with the extrapolated
classical HF values, EHF

∞ (r). Indeed, this bring the resulting curve closer to the reference
data, since the extrapolated HF curve is a notable improvement over the 3-21G HF data
(see Fig. 3) and keeps VQE correlation error minimal. However, this approximation still
displays a number of issues: it underestimates the energy in the interaction region and over-
estimates the values towards dissociation as the representation of electronic correlation by
a 3-21G basis alone is sub-optimal (as shown in Fig. 4 for the classical FCI/3-21G values).

1freely available at: https://github.com/anisotropela/add_asym
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Figure 5: Total electronic energy of H2 as a function of H–H separation. The 3-21G VQE estimations
are shown as blue circles, an alternative approximation using EHF

∞ (r) and the 3-21G VQE correlation
energy is shown as black triangles. The full extrapolated curve, using both EHF

∞ (r) and Ecorr
∞ , is shown

as red squares. Finally, the "exact" energy curve obtained classically by Sims and Hagstrom [2006] is
shown as an orange continuous line, with an indication of the chemical accuracy limit (1.6 mH) shown
as a blue outline around the curve. The symbols indicate the mode for set of data points and the
error bars indicate a bootstrap/Monte-Carlo 16-84 percentile confidence interval (see text for details).
Inset highlights the interaction region where we see that our extrapolated curve improves over the
other approximations (VQE only or EHF

∞ (r) +Ecorr,VQE
3−21G (r) correlation) and in places fully matches the

available reference data.

Finally, combining the fully extrapolated correlation energies, Ecorr,VQE
∞ (r), withEHF

∞ (r)
admittedly leads to a noisier dissociation curve, but we see that within error bars, those
results agree very well with the reference curve. We simultaneously improve the agreement
in the interaction region but also fix the dissociation limit - overall leading to a more realis-
tic curve. As stated earlier, this approach is still dominated by the uncertainty originating
from two sets of VQE experiments, but essentially, this shows that NISQ devices can the-
oretically approach the full correlation limit and full basis set limit without the need for a
large number of qubits. Indeed, the required number of qubits remains very modest and
less noisy implementations of the VQE approach would further improve the quality of the
agreement.

If we focus on the interaction region only, between 0.6 Å and 1.0 Å, we find that the
root mean square deviation from the exact curve is 13 mH for our fully extrapolated curve,
improving on 18 mH for EHF

∞ (r) + Ecorr,VQE
3−21G (r) and 28 mH for the 3-21G VQE results.

Keeping in mind that chemical accuracy (1 kcal/mol) is at around 1.6 mH, we see that
this level of accuracy would require an order of magnitude improvement in the interaction
region. Further developments in this direction are already underway in our laboratory.
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5 Realistic noise simulation data
In order to evaluate the usefulness of our approach on actual NISQ devices, we performed
the same calculations but using a machine-specific noise model of ibmq_jakarta that
accounts for coupling maps, basis gates, specific qubit noise and error.

5.1 Choice of ansatz
Initial tests showed that the UCCSD ansatz used in the previous section is often not
optimised efficiently under realistic noise conditions. Instead, we use a heuristic n`-layer
RY −{CNOT −RY }n`

hardware-efficient ansatz (HEA) for those calculations, as described
in Fig. 1 of Benfenati et al. [2021]. An example of such ansatz for the 3-21G basis set
calculation using a BK-parity mapping (6 qubits) is shown in Fig.6.

Repeat n` times
q0 : RY (θ[0]) • RY (θ[6])
q1 : RY (θ[1]) • RY (θ[7])
q2 : RY (θ[2]) • RY (θ[8])
q3 : RY (θ[3]) • RY (θ[9])
q4 : RY (θ[4]) • RY (θ[10])
q5 : RY (θ[5]) RY (θ[11])

Figure 6: Example of a 6-qubit n`-layer hardware-efficient ansatz circuit, based on RY gates and linear
CNOT gates. Here we show a single layer (n` = 1) used to generate a 12-parameter variational form
for our VQE experiments that include machine-derived noise models. Note that each additional layer
adds another 6 RY parameters.

Such ansatz has been used successfully in many studies, but does not always allow
enough flexibility to reach the FCI reference values with a single layer (see below). However,
increasing the number of layers in the ansatz leads to a good convergence to the exact FCI
value with a BFGS optimiser, for example. We show in Fig. 7 a typical convergence
profile (computed at r = 1.481696 Å) for this HEA as a function of n` for a noiseless
simulation of the 3-21G basis with BK-parity mapping. We observe that the ansatz is
close to convergence for n` = 3 already, with the largest improvement obtained by going
from n` = 2 to n` = 3. In particular, we see that this ansatz reaches the chemical accuracy
zone for n` ≥ 3 (blue zone in the lower panel of Fig. 7). In order to simplify notation, we
will use the notation HEA[n`] to signify an n`-layer HEA ansatz.

13



1.05

1.04

1.03

1.02

1.01

To
ta

l e
ne

rg
y 

[H
]

FCI/3-21G (EFCI)
VQE energy (EVQE)

1 2 3 4 5 6 7
Number of CNOT-Ry layers (n )

0
150
300
450

E V
Q

E
E F

CI
 [c

m
1 ]

Chemical accuracy zone

Figure 7: Convergence behaviour of the hardware-efficient ansatz (HEA[n`]) as a function of the number
of layers (n`) optimised using the BFGS algorithm. The total energy (shown in Hartrees) is computed
using a state-vector (noiseless) simulation of the H2 system at r = 1.481696 Å. The electronic wave
function is described using a 3-21G basis with BK-parity mapping. The lower part of the graph shows
a detailed view of the convergence behaviour (shown in cm−1), along with a shaded area indicating
chemical accuracy (< 1 kcal/mol).

5.2 Noise mitigation using a mean-field ground state
The realistic noise simulations cause a significant drift in the computed total energy of the
simulated H2 molecule. A typical example for the values obtained with the 3-21G basis set
and a BK-parity mapping is shown in Fig. 8 (top panel, left box plots) for r = 1.481696 Å.
We notice that, not only does the median total energy estimate increases as the number
of layers increases, but the total energy values obtained are significantly higher than both
the FCI reference value and the Hartree–Fock reference value for this basis set. This would
usually lead to nonphysically large and positive correlation energy values, which cannot be
used. We show in the following section how we can nevertheless mitigate this error using
a quantum circuit that evaluates the HF ground state energy.
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Figure 8: Realistic-noise simulation for the total energy of the H2 molecule (3-21G basis set and BK-
parity mapping). The H–H distance is held fixed at r = 1.481696 Å and each measurement is repeated
128 times for increasing number of layers n`. In the top panel, the left (unhatched) boxplots show
results for a set of HEA[n`] optimisations, while the right boxplots (hatched) show the results for a set
of HFHEA[n`] optimisations. The median of each data set is shown as a notch and orange line in the
box plots, along with the FCI reference energy (black dashed line) and the HF reference line (red dashed
line). Note that the y-axis on the graph has been clipped for visualisation purposes as both n` = 5
and n` = 6 experiments have a range that extends to +0.78552766 H and +1.7841259 H, respectively.
The bottom panel shows the median of the estimated correlation energy (EFCI−EHF) for each ansatz
depth, along with the reference value for the 3-21G basis set at this inter-nuclear separation (dotted
black line). The error bars indicate 1 standard deviation (1σ).

5.2.1 Equivalent mean-field ansatz

If we consider the results shown in the top panel of Fig. 8, we observe two effects. First,
the total energy increases nearly linearly as a function of n`. Second, we see an increased
statistical spread of the data obtained as n` increases (n` = 1 values show much less scatter
than n` = 6, for example). We can assume that that both shift and scatter originate
from hardware noise (gate errors, qubit noise, connectivity limitations) and possible errors
and/or optimisation bias in the VQE procedure. Thus, we postulate the following simple
model for our noisy measurements:

Emeas.
V QE = Etrue + εe (7)

where εe is a random error and we assume that εe ∼ N (µe, σ2
e), i.e. the error is distributed

normally (in line with standard error theory, see for example Hughes and Hase [2010]). In
this model, the distribution of εe accounts for both energy shifting through its parameter
µe and scattering of data through σe. We take Etrue to be the true value of the energy the
VQE procedure is trying to estimate and assume that the distribution of Emeas.

V QE is accessible
through a statistical analysis of the VQE experiments. These assumptions are reasonable
but the normality of the data is not necessarily guaranteed in practice (in particular, we
have some indications in Fig. 1 and Fig. 8 that the distribution is possibly non-normal for
large circuit depth).

In order to characterise parameters that define the error distribution, N (µe, σe), we
perform a set of VQE estimations of a known quantity: the Hartree–Fock (HF) ground
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state. Indeed, as the HF reference value is known for each inter-nuclear distance (r) from
the construction of the second-quantisation Hamiltonian, we can use Eq. 7, re-written as:

εe(r) = Emeas.
V QE−HF (r)− Etrue

HF (r) (8)

where we assume that εe varies with r and hence that the value of µe and σe that describe
the error distribution are also distance-dependent. Here, Emeas.

V QE−HF (r) is the measured
expectation values of the HF ground state and Etrue

HF (r) is the exact HF energy at inter-
nuclear separation r.

The sampling of the HF ground state expectation value is performed using a modified
HEA[n`] ansatz, named HFHEA[n`] from here on, with a similar circuit depth to that of
the original HEA[n`]. A typical example of the HFHEA[n`] for the BK-parity mapping
with 6-qubit is shown in Fig. 9.

Repeat n` times

q0 : X RY (+θ[0]) RY (−θ[0]) X • X
q1 : X RY (+θ[1]) RY (−θ[1]) X • X
q2 : RY (+θ[2]) RY (−θ[2]) •

q3 : X RY (+θ[3]) RY (−θ[3]) X • X
q4 : X RY (+θ[4]) RY (−θ[4]) X • X
q5 : RY (+θ[5]) RY (−θ[5])

Figure 9: Example of a Hartree–Fock 6-qubit ansatz (HFHEA[n`]) with a structure compatible with
the n`-layer hardware-efficient ansatz circuit. This ansatz is designed to contain approximately as many
gates as an HEA[n`] but rotations are performed in a specific sequence (+θ followed by −θ) to create an
overall null rotation and thus prevent any changes to the starting HF state during the VQE experiments.
Here we show a single layer (n` = 1).

The first set of X gates on the left of the ansatz prepare a HF grounds state for the
BK-parity mapping. This prepared ground state is then combined with a sequence of two
rotations (+θ followed by −θ) mimicking the HEA[n`] rotation gates but preventing any
changes to the HF reference. We also modify the original CNOT gates required by the
HEA[n`] anzatz to X-CNOT-X gates for the occupied qubits to ensure that identity is
preserved. The HFHEA[n`] ansatz is then used in a VQE procedure to sample the fidelity
of the state estimation, as the exact value is already known from the second quantisation
Hamiltonian. Note however that since there is no optimisable degrees of freedom in this
ansatz, we likely do not sample possible optimisation bias of the VQE procedure fully.

Typically, we perform an optimisation of the HF state just before each HEA[n`] op-
timisation in order to ensure that both measurements are close enough in time. On an
actual device, this would help minimise the effects of hardware re-calibration cycles if each
pair of measurements is considered together.

5.2.2 Noisy correlation energy computation

Since the extrapolation procedure described in Sec. 2.1 requires the correlation energy
at each distance, we need to recast Eq. 6 to a noisy context. A naive approach is to
simply subtract the exact (or true) HF energy from each FCI VQE results. Following the
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assumptions of equation 7, this can be written down as:

Emeas.
VQE−corr = Emeas.

VQE−FCI − Etrue
HF

=
(
Etrue
FCI + ε′e

)
− Etrue

HF

= Etrue
FCI − Etrue

HF + ε′e

= Etrue
corr + ε′e (9)

This is similar to the expression derived earlier and leads to a noisy estimation of the
true correlation energy. Here we denote the random error from the VQE estimation of the
FCI ground state by ε′e, as it likely also contains some optimisation bias. Unfortunately, our
noisy simulations show that the magnitude of ε′e is often too large to afford a meaningful
estimation of EVQE−corr through this simple route (see for example Fig. 8, where all FCI
estimates are very far above the true HF energy).

An alternative approach is to use the noise sampled during the HF simulation as an
internal standard to effectively "re-calibrate" our FCI results. Indeed, if we compute the
correlation energy using Emeas.

HF instead, we obtain:

Emeas.
corr = Emeas.

VQE−FCI − Emeas.
VQE−HF

=
(
Etrue
FCI + ε′e

)
−
(
Etrue
HF + εe

)
=

(
Etrue
FCI − Etrue

HF

)
+
(
ε′e − εe

)︸ ︷︷ ︸
ε′′e

= Etrue
corr + ε′′e (10)

where ε′′e = ε′e − εe is a combination of the two random errors for each measurements.
We assume that the hardware-noise component of ε′e is described by εe and that the dif-
ference (i.e. ε′′e) corresponds to any remaining VQE optimisation bias/error not sampled
by our HFHEA[n`] ansatz. If we combine this assumption with the normal sum theo-
rem, we can show that ε′′e ∼ N (µ′e − µe, σ′e2 − σ2

e), which performs an approximate error
deconvolution. In practice, we use this approach to compute the correlation energy by
subtracting the median value of Emeas.

VQE−HF(r) from Emeas.
VQE−FCI(r) and standard deviation

through σcorr.(r) =
√
σ′e(r)2 − σe(r)2. Note that this model assumes that all random errors

follow a normal distribution.

While Eq. 10 appears at first sight to be similar to Eq. 9, the present expression corrects
both for the observed energy shift and hardware noise to some extent. An example of the
performance of this approach is shown in the bottom panel of Fig. 8, where we see that the
exact correlation is recovered for all ansatz depths, within the error bars. We also see that
the number of layers has a direct influence on the scatter of the correlation estimations. It is
worth noting at this stage that the naive approach of Eq. 9 leads to erroneous nonphysical
correlation values, as can be inferred from the upper panel of Fig. 8 (distance between
median of VQE data and black dashed line).

The use of a combined set of VQE measurements for both the HF ground state and
the fully-correlated ground state, enables us to reject data points that lead to nonphysical
positive correlation energy. This is implemented in our approach and in practice leads to
1% rejections for the MINI basis results and 32% for the data obtained with the larger
3-21G basis. While the latter rejection rate is high, it is not detrimental to the correlation
energy estimation.
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5.3 Choice of ansatz depth
While a BFGS optimiser is an efficient optimiser for HEA[n`] in noiseless simulations
(see also Fig. 7), the inclusion of a realistic noise model can create challenges for most
optimisation techniques. Thus for our realistic ibmq_jakarta noise model calculations, we
used the NFT optimiser [Nakanishi et al., 2020] instead, as it leads to better convergence.
Fig. 8 shows the statistical performance of the HEA[n`] ansatz for H2 at r = 1.481696 Å
using the NFT optimiser. Despite the near-converged results of the HEA[3] ansatz in
noiseless simulations, we found that the depth of the resulting circuit leads to a very large
spread for the measured correlation results (see third set of box plots on the top panel of
Fig. 8). We opted instead for a more compact HEA[1] ansatz as best compromise between
circuit depth, correlation description and speed. This is also shown in the lower panel of
Fig. 8 where choosing n` = 1 leads to the least noisy estimation for Ecorr.

5.3.1 Error mitigation for correlation energy

In order to mitigate the remaining error stemming from the determination of the correlation
energy using two sets of VQE estimates, we fit the computed correlation energy curves for
each basis set to a functional form. Indeed, we saw both in classical and quantum data
that the correlation energy displays a monotonous decrease with inter-nuclear separation
for this system. Unfortunately, a theoretical functional form that describes the behaviour
of the correlation energy is currently not available, so instead we use symbolic regression
(PySR package [Cranmer, 2020, Cranmer et al., 2020]) to build a suitable function. The
best scoring function is obtained by training on the correlation data shown in Fig. 4 (MINI,
3-21G and from Sims and Hagstrom [2006]). The expression that combines expressiveness
with few parameters is determined as Ecorr.(r) = a exp(r) + b. Indeed, this expression fits
all classical reference curves with an R2 ≈ 0.99 and provides a very robust fit for our noisy
VQE values. The resulting fits are shown in Fig. 10 and describe the VQE values well for
both MINI basis set (R2 = 0.994) and 3-21G basis set (R2 = 0.703) data.
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Figure 10: Electronic correlation energy curve for the H2 molecule as a function of H–H separation
obtained through VQE simulated experiments using HEA[1]/HFHEA[1] ansatzes for the MINI (diamond)
and 3-21G (circles) basis sets. The symbol indicates the median for each series of experiment, computed
using the procedure described in Sec. 5.2.2, along with error bars to indicate 1 standard deviation (1σ).
An empirical fit of the correlation energy to Ecorr.(r) = a exp(r) + b is also shown as a full green line,
along with the fit parameters and their standard deviation at the bottom of each panel. Classically
computed curves at the FCI level are also provided for each basis set.

We note however that using a realistic noise model in the simulations caused a marked
deviation for the MINI data for large values of r compared to the curve obtained for this
basis set in earlier simulations (Fig. 2). This could be caused by the different ansatz used
(HEA[1] vs UCCSD) and the slightly different mapping (BK-parity vs BK).

5.4 Full electronic curve
Following the same procedure as for the generic noise simulations (see Sec. 4.4), we now
combine the extrapolated HF results from Sec. 4.2 to correlation measurements performed
using the "internal standard" approach described earlier (Sec. 5.2.2). We choose an
HEA[1]/HFHEA[1] ansatz combination and a BK-parity mapping as the best compro-
mise to minimise hardware error. As before, we also combine the correlation energy results
obtained by fitting the data for both basis sets and use it in the extrapolation equations
from Eq. 3. The resulting total potential energy curve for H2 obtained for simulations with
a realistic noise is shown in Fig. 11, along with the reference curve of Sims and Hagstrom
[2006].

First of all, to provide a comparison with the generic noise model, we construct a total
energy curve for the 3-21G basis set by combining the VQE correlation energy obtained
using our error-mitigated HEA[1]/HFHEA[1] approach with the classical Hartree–Fock en-
ergy for this basis set, EHF

3−21G(r). As observed previously for our generic noise simulations,
3-21G alone is not able to provide a reliable description of the total energy of the system,
although it displays a relatively small VQE error along the curve. More quantitatively, we
observe a root mean square deviation (RMDS) from the exact curve of 41 mH over the
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Figure 11: Total electronic energy of H2 as a function of H–H separation, r, in Angstroms. The curve
is obtained through a mixed (internal standard) approach that uses a HEA[1]/HFHEA[1] combination,
along with error mitigation (see text for details). The reconstructed 3-21G VQE estimations are shown
as blue circles (Classical EHF

3−21G with VQE Ecorr.), an alternative approximation using EHF
∞ (r) and

fitted 3-21G VQE correlation energy is shown as black triangles. The full extrapolated curve, using
both EHF

∞ (r) and fitted Ecorr
∞ , is shown as red squares. The "exact" classical energy curve from Sims

and Hagstrom [2006] is shown as an orange continuous line. The symbols indicate the median for set of
data points and the error bars indicate a 1σ standard deviation (computed through bootstrap/Monte-
Carlo 16-84 percentile for fitted and extrapolated correlation data, see Sec. 4.4 for details). The lower
panel shows the deviation from the exact curve (E − ERef ) for the two best approximations.

We obtain a much better agreement if instead we use the fitted 3-21G correlation energy
obtained for the HEA[1]/HFHEA[1] experiments and combine it with the extrapolated
classical HF values, EHF

∞ (r). We saw previously that this approach gave a very reasonable
agreement for the generic noise simulations and we see in Fig. 11 that this remains the
case here too. The generated curve is this time very close to the exact curve and benefits
from the smoothing offered by the empirical fitting of the correlation values, which also
shrinks the error bars. This approach shows an impressive RMSD from the exact curve of
12 mH for the interaction region. This is likely a fortuitous improvement since the RMSD
from the exact curve for the classical FCI/3-21G total energy is 26 mH.

Finally, contrarily to our earlier generic noise simulation results, we see that the ex-
trapolation procedure generates a curve that systematically over-estimate the exact energy
curve. This is a likely consequence of the unexpectedly poor description of the MINI corre-
lation energy for this combination of ansatz and mapping in our noisy simulations. While
it might be tempting to prefer the earlier approach that combines EHF

∞ (r) with fitted
Ecorr,VQE

3−21G (r), it is unlikely that the correlation obtained with such small basis set would
be suitable for larger systems. However, if we consider the lower panel of Fig. 11, we
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observe that both approaches agree with the exact curve within a 1σ deviation. Lastly,
we compute an RMSD from the exact curve in the interaction region is 22 mH for our
extrapolated method, which is 9 mH higher than for the generic noise simulations. Yet,
given the simplicity of the approach used, it is encouraging that NISQ simulations can
provide this level of accuracy. Moreover, any improvements in the VQE approach, such
as ADAPT-VQE [Grimsley et al., 2019] or iQCC-VQE [Ryabinkin et al., 2020], to name a
few, would automatically improve the accuracy of our technique.

6 Conclusions
We have shown that our mitigation procedures, combined with an energy extrapolation
scheme that uses only sub-minimal basis sets, are able to deliver total energy curves on-par
with the best classical data available for the H2 molecule. Indeed, our approach provides
data that can theoretically surpass a "chemically-relevant" calculation [Elfving et al., 2020]
for this molecule, such as for example a CCSD/cc-pVTZ calculation. We observed that
the quality of the final results is largely determined by measurement noise and ansatz
quality. In particular, we see that even small basis set calculations can be challenging on
simulated NISQ devices. Nevertheless, using an estimation of the reference Hartree–Fock
ground state and correlation energy fitting enables a robust mitigation technique that is
easily applicable to other VQE approaches or ansatzes.

The extrapolation scheme suggested by Varandas [2018] is very accurate when using
classical FCI values (see for example Fig. 4) and reasonably practical for VQE data, as
long as they have a good fidelity (see the MINI basis set data for example). This led
to both generic noise simulations and realistic noise simulation data with extrapolation
usually improving over the correlation energy computed using the larger 3-21G basis set.

We showed a systematic convergence beyond chemical accuracy for the HEA[n`] ansatz
in noiseless simulations. However, we observed that a conservative (and less converged)
ansatz is preferable in simulations that implement a more realistic noise model. The simple
ansatz and a straightforward qubit mapping we use in this work can be advantageously
replaced by more elaborate schemes, if a suitable equivalent HF ansatz can be formulated.
Further work is underway to explore the application of this scheme to larger systems.
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