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Abstract

A milestone in the field of quantum computing will be solving problems in quantum chemistry
and materials faster than state of the art classical methods. The current understanding is that
achieving quantum advantage in this area will require some degree of error correction. While
hardware is improving towards this milestone, optimizing quantum algorithms also brings it
closer to the present. Existing methods for ground state energy estimation require circuit
depths that scale as O(1/ε · polylog(1/ε)) to reach accuracy ε. In this work, we develop and
analyze ground state energy estimation algorithms that use just one auxilliary qubit and for
which the circuit depths scale as O(1/∆ · polylog(∆/ε)), where ∆ ≥ ε is a lower bound on the

energy gap of the Hamiltonian. With this Õ(∆/ε) reduction in circuit depth, relative to recent
resource estimates of ground state energy estimation for the industrially-relevant molecules of
ethelyne-carbonate and PF−

6 , the estimated gate count and circuit depth is reduced by a factor
of 43 and 78, respectively. Furthermore, the algorithm can take advantage of larger available
circuit depths to reduce the total runtime. By setting α ∈ [0, 1] and using depth proportional

to ε−α∆−1+α
true , the resulting total runtime is Õ(ε−2+α∆1−α

true ), where ∆true is the true energy
gap of the Hamiltonian. These features make our algorithm a promising candidate for realizing
quantum advantage in the era of early fault-tolerant quantum computing.

1 Introduction

When will quantum computers solve valuable problems that are out of reach for state-of-the-art
classical approaches? To understand this future moment of quantum advantage, we must know
what computational problems are most apt and what useful quantum algorithms will be able solve
them in the nearest time frame. Despite some recent challenges being illuminated [1], estimating
the ground state energy of quantum systems [2] remains one of the leading contenders for the first
realization of quantum advantage. Solving this problem efficiently with a quantum computer would
be of high value to areas including combustion [3], batteries [4, 5], and catalysts [6]. Considering that
the progress in quantum hardware has led to steady improvement [7], we are urged to investigate:
what are the minimal quantum resources needed to realize quantum advantage with ground state
energy estimation?
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The bottleneck quantum resource in implementing powerful quantum algorithms is the number
of operations that need to be executed in a single quantum circuit. Standard methods for ground
state energy estimation (GSEE) [2, 8] require hundreds of logical qubits and many operations (e.g.
greater than 1010 T gates [4]) and, therefore, deep quantum circuits (i.e. number of layers of parallel
operations). Accordingly, each operation must be implemented with very low error rate (e.g. less
than 10−10 [4]). This places fault-tolerant overhead demands on the quantum architecture that
cannot be realized on today’s hardware. The timeline of realizing such architectures is uncertain.

One path to realizing quantum advantage sooner for the problem of ground state energy estima-
tion is through the development of quantum algorithms. In this work, we aim to develop quantum
algorithms for ground state energy estimation that reduce the required number of operations and
circuit depth compared to previous methods. To understand how this is possible, we must consider
the parameters that govern the cost of existing quantum algorithms.

The cost of ground state energy estimation algorithms is typically measured as a function
of several key parameters determined by the problem instance and solution specifications. The
problem instance is given by a Hamiltonian H and we assume that there is a means of preparing
a quantum state ρ that approximates the ground state of H. Three parameters relevant to costing
GSEE algorithms are ε, the target accuracy of the ground state energy estimate, ∆, a lower bound
on the energy gap (i.e. the difference between the smallest and next-smallest eigenvalue of H), and
η, a lower bound on the overlap of ρ with the ground state1. In terms of asymptotic scaling, existing
methods require circuit depths that scale as Õ(ε−1η−2)2 [10]. There are methods which improve
the circuit depth scaling down to Õ(ε−1), however, there are additional costs that need to be paid
in terms of ancilla qubits and multi-qubit control operations [11]. Such methods were costed in
[4] and were responsible for the large gate counts of greater than 1010. As mentioned above, the
timeline is uncertain for realizing the hardware architectures that are needed to implement these
methods for useful problem instances.

In anticipation of these high circuit depth costs, the field has developed methods for GSEE that
do not require as deep of quantum circuits. The most popular approach has been the variational
quantum eigensolver (VQE) algorithm [12]. However, recent work [3] has shown that, for chemical
system sizes of industrial relevance, the time requirements of VQE are too high to make the method
practical. Even when more efficient methods are used to speed up the bottleneck subroutine of
energy estimation [13], the cost of the algorithm remains too high. It is important to note that
we encounter such roadblocks even if we ignore other challenges for VQE such as the classical
optimization [14, 15].

In the quest to discover the first realization of quantum advantage, the above challenges have
motivated us to explore a “goldilocks” region for ground state energy estimation. We aim to
develop ground state energy estimation algorithms which require modest circuit depths while also
having provable performance guarantees. The two main components of most ground state energy
estimation circuits are the initial state preparation circuit V : |0〉 〈0| → ρ and the energy estimation
circuit U (e.g., the series of controlled time evolutions used in the quantum phase estimation
algorithm). For state-of-the-art methods, the circuit depth scaling for ground state preparation is
Õ(1/∆) and for ground state estimation is Õ(1/ε). Accordingly, the total circuit depth is Õ(1/∆ +
1/ε). In many problem instances, and especially those in quantum chemistry [8], the spectral gap
∆true (and in many cases the estimated lower bound ∆) is substantially larger than the required
accuracy ε. Therefore, to reduce the circuit depth of ground state energy estimation, we are

1An important caveat for all known ground state energy estimation methods (c.f Table I of [9]) is that if η is
extremely small, then we have little hope of accurately estimating the ground state energy. Thus, it is common to
assume that the Hamiltonian of interest admits a good ground state approximation.

2We will use Õ(g) to abbreviate O(g · polylog(g)).
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motivated to improve the scaling in the energy estimation component of the algorithm, rather than
the state preparation component. As it might be expected, this circuit depth savings will come at
the expense of a higher sample complexity and additional classical post-processing [16].

Recent work [17] has developed ground state energy estimation algorithms in which the energy
estimation circuit depths scale as Õ(1/ε), require just a single ancilla qubit, and involve no costly
circuit operations beyond controlled time evolutions. As mentioned in the footnote above, a caveat
of this method and all energy estimation algorithms is that a good ground state approximation is
needed as input (i.e. η is not too small). This algorithm requires running the circuits of depth
Õ(ε−1) multiple times, leading to a total runtime of Õ(ε−1η−2). More recently, [9] improved on this
result, developing an algorithm with similar characteristics, yet achieving a runtime of Õ(ε−1η−1).
Both of these methods achieve the so-called Heisenberg limit scaling in the runtime with respect to
ε. Other recent work [18] combined the ideas in [17] with the principles of QDRIFT [19] to propose
a ground state energy estimation algorithm which trades off between number of non-Clifford gates
and runtime.

All of these methods employ quantum circuits whose depth scales inversely with the target
accuracy ε. This circuit depth cost may put some important problem instances out of reach for
early fault-tolerant quantum computers. The question addressed by this work is: do there exist
ground state energy estimation methods for which the circuit depth provably scales better than
Õ(1/ε)?

1.1 Main results

In this work, we develop and analyze low-depth ground state energy estimation (GSEE) algorithms
with high accuracy for which the circuit depth scales more favorably than Õ(1/ε). As is typical,
the circuit depth and quantum runtime of the algorithm is measured in terms of the number of
controlled evolution operations c-exp (−2πiH) referred to as Hamiltonian evolution time.

Theorem 1.1 (Low-depth GSEE, informal version of Theorem 5.1). Let H be a Hamiltonian with
spectral gap at least ∆. Suppose we can prepare an initial state ρ such that the overlap with the
ground state satisfies 〈E0|ρ|E0〉 ≥ η. Given ∆, η and sufficiently small ε, there exists an algorithm
to estimate the ground state energy within accuracy ε with high probability such that:

• The circuit depth, measured in maximal Hamiltonian evolution time, is

Tmax = O(∆−1 · poly log
(
ε−1η−1∆

)
). (1)

• The quantum runtime, measured in total Hamiltonian evolution time, is

Ttot = O(η−2ε−2∆ · poly log
(
ε−1η−1∆

)
). (2)

Remark 1.2. In our work we measure circuit depth and runtime in terms of the costs needed to
implement a unit time evolution operation c-exp (−2πiH). The cost of this operation depends on
the Hamiltonian itself and the method used for implementing the time evolution. Therefore, the
absolute costs of our method will inherit the costs associated with the Hamiltonian and choice of
simulation method. State-of-the-art methods for simulating a Hamiltonian H for a given time t
have circuit depths linear in |||H|||t, where |||·||| is a matrix norm (e.g., the method in [20] based on
quantum signal processing has cost linear in ‖H‖max t, while the method in [21] based on quantum
singular value transformation has cost linear in ‖H‖2 t). The resource costs of our GSEE algorithm
depend mainly on the relative accuracy ε/∆, and simultaneously re-scaling the Hamiltonian H (and
thus ∆ and ε) will not alter this crucial factor.
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We emphasize that in Theorem 1.1, η and ∆ are merely lower bounds of the values p0 and
∆true = E1−E0, respectively. These are common assumptions in the analysis of quantum algorithms
whose performance is governed by these quantities [22]. In practice, there are surely instances of
Hamiltonians for which these quantities can only be loosely lower bounded with very small values.
As with methods in classical quantum chemistry, we anticipate that practitioners of these quantum
algorithms will exploit structure in the Hamiltonian to help run such algorithms. For example, for
many Hamiltonians of interest the Hartree-Fock state serves as an initial state with large overlap p0

and can be prepared with low depth (proportional to the system size) on a quantum computer[23].
Previously we mentioned that for many systems in quantum chemistry the true gap is large relative
to chemical accuracy. Beyond knowing this, it is important to have some sufficiently accurate
estimate of ∆true so that the lower bound ∆ can be as large as possible. Classical quantum chemistry
methods can be used to obtain estimates of the gap. The method we use to get estimates on the
gaps of ethelyne carbonate (EC) and PF−6 is EOM-CCSD, a gold standard in quantum chemistry.
Three standard deviations in accuracy for such estimates is roughly ±20 mHa (see STEOM-CCSD
results in Table 12 of [24]), which we use to inform our lower bounds on the estimate of the gap.

The fact that ∆ is simply a lower bound in our algorithm also presents an opportunity. Consider
the case where a reduced runtime is desired at the expense of increased circuit depth. One can set
∆ to a value between Õ(ε) and ∆true (though this is possible in principle, in practice one might
have to use a lower bound on ∆true for one end of the interpolation). By tuning ∆ between these
two extremes, we achieve an interpolation between an algorithm with low circuit depth and an
algorithm that reaches the Heisenberg limit. Specifically, we have:

Corollary 1.3. Let H be a Hamiltonian with spectral gap ∆true. Suppose we can prepare an initial
state ρ such that the overlap with the ground state satisfies 〈E0|ρ|E0〉 ≥ η. Then for arbitrary
α ∈ [0, 1], given ∆true, η and sufficiently small ε, there exists an algorithm to estimate the ground
state energy within accuracy ε with high probability such that:

• The circuit depth, measured in maximal Hamiltonian evolution time, is

Tmax = Õ(ε−α∆−1+α
true ). (3)

• The quantum runtime, measured in total Hamiltonian evolution time, is

Ttot = Õ(η−2ε−2+α∆1−α
true ). (4)

Before giving a more detailed overview of the algorithm and the detailed technical results we
discuss the implications of the main results. The algorithm we develop achieves a reduction in
circuit depth of Õ(∆/ε) compared to state-of-the-art ground state energy estimation algorithms
[9]. This reduces the quantum resources needed to solve the GSEE problem, opening the possibility
of achieving quantum advantage for GSEE sooner.

As an example, consider the ethelyne carbonate (EC) and PF−6 molecules analyzed in [4].
For these molecules in the cc-pVDZ basis, we can estimate the energy gaps using EOM-CCSD
calculations with ORCA software [25, 26], finding them to be ∆EC = 264 ± 20 mHa and ∆PF−6

=

468 ± 20 mHa, respectively. Accordingly, we take the lower bounds on these gaps to be 244
mHa and 448 mHa, respectively. The target accuracy considered in [4] was ε = 1 mHa. The
standard approach to quantum phase estimation (ignoring the cost due to imperfect ground state
preparation) uses a circuit with 2/ε applications of c-exp (2πiH) to achieve an ε accurate estimate
with high probability. Including the various logarithmic factors (c.f. Algorithm 5) and setting a
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New Regime

Circuit depth (Tmax)

Runtime
(Ttot)

η−2ε−1

η−1ε−1

η−1/2ε−1

∆−1
true

η−2ε−2∆true

ε−1 η−1/2ε−1

Cor 1.3

Thm 1.1

[17, 18]

[9]

[9]

Figure 1: This figure shows the landscape of early fault-tolerant GSEE algorithms plotted accord-
ing to their runtime and circuit depth measured in terms of total evolution time (Ttot) and maximal
evolution time (Tmax), respectively. The green region indicates the new low-depth regime intro-
duced in this work. The orange dot corresponds to the ∆−1-depth GSEE algorithm (Theorem 1.1)
when ∆ = ∆−1

true, and the curve shows the smooth trade off between Tmax and Ttot described in
Corollary 1.3. We also remark that the right-most dot which shows an algorithm in [9] requires
multiple ancilla qubits and multi-qubit controlled operations, whereas the algorithms in this work
and [17, 18] only use a single ancilla qubit. For simplicity, we have ignored all the poly-logarithmic
factors.

conservative value of η = 1/1000, we find that with our method it is possible to reduce the gate
count and circuit depths of ground state energy estimation by a factor of 43 and 78, respectively.

Compared to recent methods [17], which use 2/πε applications of c-exp (2πiH), the circuit
depths are reduced by a factor of 16 and 28, respectively. For molecules with larger gaps, these
savings would improve proportionally. Accordingly, the fault-tolerant overhead required to imple-
ment ground state energy estimation is reduced. Such reductions may help to bring such problem
instances within reach of earlier fault-tolerant quantum architectures, potentially realizing quantum
advantage sooner.

It might be the case, however, that the runtime of this low depth algorithm is too high to
outperform state-of-the-art classical methods for solving the same problem. Our second main
result (c.f. Corollary 5.2) is that we can trade circuit depth for total runtime reduction. This gives
a means of speeding up the overall algorithm. Through the era of early fault-tolerant quantum
computing, as quantum architectures are able to realize deeper quantum circuits, there may be a
crossing point into quantum advantage.

2 Overview of the GSEE algorithm

In this section, we give an overview of our low-depth GSEE algorithm. We first give a formal
stating of the GSEE problem. Then we discuss how to overcome the barrier of the quantum circuit
depth required by previous algorithms, and propose a general approach for efficiently evaluating
any convolution of the spectral density (c.f. Equation 7).
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Figure 2: This figure compares the convolution functions and circuit depths used in the ground
state energy estimation method of LT22 [17] and the method developed here. The LT22 method uses
a Heaviside convolution, while our method uses a Gaussian derivative convolution. Their method
requires a steep jump in the convolution function, which necessitates Õ(1/ε)-depth circuits. Our
method only requires that contribution of the excited state energies to the convolution function
does not interfere too much with that of the ground state energy. This affords the use of a less-steep
convolution function, which only requires Õ(1/∆)-depth circuits. The trade-off is that our method
requires more samples, leading to an increased total runtime.

Problem formulation. Suppose we are given a classical description of a quantum Hamiltonian
H. This Hamiltonian has (unknown) spectral decomposition H =

∑N−1
j=0 Ej |Ej〉 〈Ej |, where E0 <

E1 ≤ E2 ≤ ... ≤ EN−1 are the eigenvalues of H, and the |Ej〉’s are orthonormal eigenstates of H.
Let ρ be an easy-to-prepare state (of the same dimension as H). Let pj := 〈Ej | ρ |Ej〉 be the overlap
between ρ and |Ej〉, for 0 ≤ j ≤ N − 1. We assume that two numbers η ∈ (0, 1) and ∆ > 0 are
given such that p0 = 〈E0| ρ |E0〉 ≥ η and E1 −E0 ≥ ∆. Our goal is to estimate E0 with accuracy ε
and confidence 1− δ, i.e. to output a sample from a random variable Ê0 such that

P
[
|Ê0 − E0| > ε

]
< δ, (5)

for given small ε > 0 and δ ∈ (0, 1). Furthermore, we want to achieve this by using only Hadamard
tests (in which the unitary operation is controlled-eiHt for some small t ∈ R) as well as classical
post-processing.

The quantum circuit of the Hadamard test is given in Figure 3. Let b ∈ {0, 1} denote the
measurement outcome of the circuit. Then one can show that the expectation E[(−1)b] equals the
real or imaginary part of tr

[
ρe−iHτ

]
depending on whether W = I or W = S† where S is the phase

gate.
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|0〉 H • W H

ρ e−iHτ

Figure 3: Hadamard test circuit parameterized by the Hamiltonian evolution time τ . H is the
Hadamard gate and W is either I or S†, where S is the phase gate.

Intuitive introduction to the methods. Before giving an overview of previous methods, we
will provide an intuitive description of why one might expect to be able to solve the GSEE problem
given data from these Hadamard tests. Our hope is that this will help the reader to anticipate the
subsequent methods that will be discussed and to appreciate what is achieved by the algorithms
developed in this work.

It is helpful to view the quantity tr
[
ρe−iHτ

]
as a complex-valued time signal, with τ being the

time. This time signal encodes information about the eigenvalues of H and the density operator ρ.
In particular, if we can determine how this signal depends on the ground state energy E0, then we
might be able to estimate E0 from the time signal. Although we are unable to exactly determine
the time signal, we can estimate the real and imaginary parts of the signal at any time τ to within
any desired accuracy using sufficiently many Hadamard test measurement outcomes as described
above. The time cost of each Hadamard test is proportional to τ and the total time cost will depend
on how many Hadamard tests, or samples, we take over the different chosen times τ .

To understand how the ground state energy can be estimated from the signal, we can express
the quantities inside the trace in the energy eigenbasis of H,

tr
[
ρe−iHτ

]
=

N−1∑
j=0

〈Ej | ρ |Ej〉 e−iEjτ . (6)

The signal is composed of a mixture of “pure tones” e−iEjτ , one for each eigenvalue and each
with weight 〈Ej | ρ |Ej〉. Observe that if 〈E0| ρ |E0〉 = 0, then the signal has no dependence on E0

and there is no hope of accurately estimating the ground state energy. Also, if 〈E0| ρ |E0〉 is too
small, then the ground state energy will be difficult to distinguish from any statistical fluctuations
in the signal that are due to finite sampling. Intuitively, the performance of any algorithm for
GSEE should depend on 〈E0| ρ |E0〉, the weight of the ground state energy pure tone in the signal.
Generally, it is difficult to estimate 〈E0| ρ |E0〉 exactly. A weaker and more reasonable assumption
is that a lower bound η ≤ 〈E0| ρ |E0〉 is given.

Finally, with a promise on the weight of the ground state energy pure tone e−iE0τ , how are we
to estimate the value of E0? Observe that the Fourier modes of the signal tr

[
ρe−iHτ

]
are the pure

tones corresponding to each eigenvalue. Therefore, the Fourier transform of the true signal would
reveal a series of peaks located at frequencies that correspond to the eigenvalues. The challenge is
that we cannot learn the exact signal. At best we can estimate the value of the signal at a finite
subset of times yielding a noisy, discretized version of the signal. Although we cannot determine the
exact Fourier transform output, or frequency signal, we can calculate the discrete Fourier transform
of the noisy, discretized signal estimate. Remarkably, with a sufficiently accurate estimate of the
discrete time signal, this noisy, discretized frequency signal exhibits enough resemblance to the
exact frequency signal to pick out the ground state energy.
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In this framework, the bulk of any GSEE algorithm design and analysis amounts to choosing
how accurately to estimate the signal, choosing how to extract the ground state energy from this
signal estimate, and proving that, with high probability, an accurate estimate is obtained. When
choosing how accurately to estimate the signal, we must choose a finite time window in which to
estimate the time signal. As is common in signal processing, a longer time window translates into
a higher-resolution frequency signal. For example, imagine two swings swinging in unison. If their
frequencies are different, but very close to one another, we would have to wait a long time before
we could determine which was swinging faster. Alternatively, say we only let the swings swing for
a short period of time. Is it possible to determine which is swinging faster? The answer is yes, but
at a cost. We would need to very accurately measure the position of the two swings.

This trade-off is analogous to the one explored in our work. Instead of the maximum swing
duration, we have the maximum evolution time τ , which is proportional to quantum circuit depth.
And, instead of accuracy in measuring the position of the swings, we have the accuracy of estimating
the signal. The accuracy of estimating the signal is determined by the number of Hadamard test
samples. Previous GSEE methods used deeper quantum circuits and fewer Hadamard tests, while
our method uses shallower quantum circuits and more Hadamard tests.

Overview of previous early fault-tolerant GSEE methods. Here we give a high-level
overview of Lin and Tong’s early fault-tolerant algorithms for GSEE in [17], which involve sim-
ilar techniques to ours. The main idea is to process the time signal described above such that the
output frequency signal is a mixture of step functions (i.e. Heaviside functions). The ground state
energy is then estimated by locating the first step of the frequency signal. More specifically, let

p(x) :=

N−1∑
j=0

pjδ(x− Ej) (7)

be the spectral measure of H associated with the initial state ρ. Then consider the convolution of
p(x) and Θ(x), the 2π-periodic Heaviside function3:

C(x) := (Θ ∗ p)(x) =

N−1∑
j=0

pj · 1x≥Ej ∀x ∈ (−π, π), (8)

assuming that the eigenvalues of H are between (−π/3, π/3). Since p0 > 0 and pj ≥ 0 for 1 ≤
j ≤ N − 1, we know that E0 is the first non-zero point of C(x) for x ∈ (−π, π). Moreover, C(x)
is non-decreasing in (−π, π). Thus, if we could evaluate the function C(x) at different points x,
then we could narrow in on the first step of C(x) (located at E0) to any desired accuracy using a
binary search: each step of the search determines whether x is to the left or to the right of E0 by
checking whether C(x) = 0 or C(x) > 0. Unfortunately, we cannot directly compute C(x), but we
can estimate:

C(x) =

∫ ∞
−∞

Θ̂(t)e2πixt tr
[
ρe−2πiHt

]
dt, (9)

with the help of a quantum computer. Here Θ̂(t) is the Fourier coefficient of Θ(x). Note that
tr
[
ρe−2πiHt

]
can be estimated via the Hadamard-test circuit with evolution time 2πt. Thus, Eq. (9)

gives a way to estimate C(x). One issue is that the Fourier spectrum of Θ(x) is unbounded, which

3Θ(x) =

{
1 if x ∈ [2kπ, (2k + 1)π)

0 if x ∈ [(2k − 1)π, 2kπ)
∀k ∈ Z.

8



means we need to evolve the Hamiltonian for infinite time. Lin and Tong [17] resolved this problem
by designing a low Fourier-degree function F (x) that approximates Θ(x) in [−π+ ε,−ε]∪ [ε, π− ε].
Then we have

C̃(x) := (F ∗ p)(x) =

d∑
j=−d

F̂ (j)e2πijx tr
[
ρe−2πiHj

]
.

If suffices to estimate 2d+ 1 terms to approximately evaluate C̃(x). They also proved that C(x) ≈
C̃(y) for some y that is ε-close to x. Therefore, the first non-zero point of C(x) can be approximated
within ε-accuracy by a robust binary search on C̃(x).

We now describe the costs of this algorithm. The maximal Hamiltonian evolution time (i.e.,
circuit depth) is proportional to the Fourier degree d of F (x). The fact that the Heaviside function
Θ(x) is discontinuous at 0 imposes challenges to approximating it by a low Fourier-degree function
or other low-degree smooth functions in a neighborhood of 0 [27, 28]. To the best of our knowledge,
the state-of-the-art result is by Wan, Berta and Campbell [18], which obtained an O(ε−1)-Fourier
degree function that approximates Θ(x) up to ε in [−π, π]\(−ε, ε). Hence, the maximal evolution
time of this approach is O(1/ε). As to the expected total evolution time (i.e., quantum runtime),
they used the multi-level Monte Carlo method to achieve Õ(ε−1η−2)-time.

Overcoming the 1/ε-depth barrier. We observe that the bottleneck of the maximal evolution
time in previous methods is due to the high Fourier approximation degree of the Heaviside function.
It is natural to ask: can we choose another filter function that can still help us estimate the minimum
eigenvalue while having a lower Fourier approximate degree (or band-limit)?

Indeed, we have a key observation for the design of filter functions. If a filter function satisfies
the following properties, then it can isolate the minimum eigenvalue from the others well and the
corresponding convolution can be evaluated easily:

1. The filter function f(x) has an exponentially-decaying tail, i.e., |f(x)| = exp (−Ω(|x|)) for
sufficiently large x. This enables the filter function to “almost” eliminate the interference of
other eigenvalues to the peak around E0.

2. The filter function’s Fourier transform f̂(t) also has an exponentially-decaying tail, i.e.,
|f̂(t)| = exp (−Ω(|t|)) for sufficiently large t. This allows f to be well-approximated by a
band-limited function, which means that the maximal evolution time in the Hadamard tests
will be small.

Based on this observation, a natural choice is the Gaussian filter, defined as:

fσ(x) =
1√
2πσ

e−
1
2
x2/σ2

, (10)

where σ > 0 is a parameter to be chosen later. Note that its Fourier transform is another Gaussian
kernel (up to some scaling factor):

f̂σ(t) = e−
1
2

(σπt)2
.

Thus, most of its mass is concentrated within |t| = O(σ−1). More importantly, by convolving fσ
with the spectral measure p, we get:

(fσ ∗ p)(x) =
N−1∑
j=0

pj · fσ(x− Ej),

9



Figure 4: This figure illustrates the convolution (fσ ∗ p)(x) =
∑3

j=0 pjfσ(x − Ej) for σ = 0.25,
(p0, p1, p2, p3) = (0.2, 0.4, 0.25, 0.15) and (E0, E1, E2, E3) = (0.3, 1.5, 2.3, 3.5). The solid curve is
(fσ ∗ p)(x), while the dashed curves are pjfσ(x − Ej) for j = 0, 1, 2, 3 respectively. Note that
(fσ ∗ p)(x) resembles p0fσ(x− E0) in a neighborhood of E0 = 0.3.

which is a mixture of Gaussians. Figure 4 illustrates an example of fσ ∗ p.
Since the Gaussian filter has an exponentially-decaying tail, if we zoom-in to a neighborhood of

E0, the convolution value is dominated by the first Gaussian kernel p0 · fσ(x−E0). Therefore, the
first significant peak of fσ ∗ p will be close to E0 and the GSEE is then reduced to a peak finding
problem. Our approach for this problem is to first run the Lin and Tong’s algorithm ([17]) with
low accuracy (i.e., Ẽ0 ∈ [E0 − O(σ), E0 +O(σ)]). Then we partition the interval [Ẽ0 − σ, Ẽ0 + σ]
into a O(ε)-width grid, and estimate the convolution fσ ∗ p at each grid point. Finally, we output
the position of the grid point with maximum convolution value. The complexity of this algorithm
depends on σ, the width of the Gaussian filter, since we can only truncate its spectrum to [−T, T ]
for T = Θ̃(1/σ) in order to evaluate the convolution with enough precision. We prove that for
sufficiently small accuracy-parameter ε, we can take σ = O(∆/polylog(∆ε−1η−1)) such that the
algorithm can output an estimate for E0 within ε-additive error. It implies that the maximal
Hamiltonian evolution time of our algorithm is Õ(1/∆). We note that when ε � ∆, i.e., in the
high-accuracy regime, our algorithm has shallower quantum circuit depth than previous methods
[17, 18].

A universal approach for the convolution evaluation. It remains to design a sample-efficient
method to evaluate the convolution fσ,T ∗ p, where

fσ,T (x) :=

∫ T

−T
f̂σ(t)e2πixtdt

is the band-limited approximation of fσ. In this work, we propose a general approach to evaluating
such convolution for a large family of filter functions, which may be of independent interest. Let
fT be any function such that supp(f̂T ) ⊆ [−T, T ] and f̂T is either continuous or a weighted sum of
Dirac delta functions. Recall that

(fT ∗ p)(x) =

∫ T

−T
f̂T (t)e2πitx tr

[
ρe−2πiHt

]
dt.
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The key idea for estimating this integral is to sample t ∈ [−T, T ] from a distribution with the
following probability density:

ν(t) :=
|f̂T (t)|
‖f̂T ‖1

, ∀t ∈ [−T, T ],

where ‖f̂T ‖1 is the L1-norm of f̂T . By a change of variables, we have

(fT ∗ p)(x) =

∫ T

−T
‖f̂T ‖1e2πi(tx+φ(t)) tr

[
ρe−2πiHt

]
ν(t)dt,

where φ(t) is the phase of f̂T (t). Then, for S independent samples t1, . . . , tS ∼ ν, our estimator for
(fT ∗ p)(x) is defined as:

Z(x) :=
‖f̂T ‖1
S

S∑
i=1

e2πi(tix+φ(ti))Zti ,

where Zti is an estimate for tr
[
ρe−2πiHti

]
obtained by running the Hadamard-test circuit twice

(one for the real part and another for the imaginary part). To upper bound the sample complexity
S, we observe that |e2πi(tix+φ(ti))Zti | = O(1). Thus, by Hoeffding’s bound, it suffices to take
S = Õ(ε−2

1 ‖f̂T ‖21) to achieve ε1-accuracy.
We now sketch how to bound the total evolution time of our algorithm with the Gaussian filter.

As we will see, its performance will be sub-optimal, so we will only analyze a more refined version
with better performance in detail. For the truncated Gaussian filter fσ,T , we have ‖f̂σ,T ‖1 = O(σ−1),

and we need to evaluate the convolution with accuracy ε1 = Õ(ηε2σ−3). To see this, note that the
Taylor expansion for the Gaussian density around 0 up to second order yields

fσ(ε) ' 1√
2πσ

− ε2√
2πσ3

,

and we see that the peak will decrease by a factor of O(ηε2σ−3) around the ground state. Thus,
by our choice of σ = Õ(∆), the sample complexity is Õ(η−2ε−4σ6 · σ−2) = Õ(η−2ε−4∆4). Hence,
the total evolution time is Ttot ≤ Õ(η−2ε−4∆4 · T ) = Õ(η−2ε−4∆3) as T = Õ(1/σ) = Õ(1/∆).

Reducing Ttot via Gaussian derivative filtering. The bottleneck of our total evolution time is
the normalized convolution evaluation accuracy ε1

‖f̂T ‖1
, which equals to O(ηε2σ−2) for the Gaussian

filter fσ.
To improve this factor, we switch to the Gaussian derivative filter gσ which is defined as follows:

gσ(x) := − 1√
2πσ3

xe−
x2

2σ2 .

Figure 5 illustrates an example of gσ ∗ p. Since the Gaussian derivative filter has an exponentially-
decaying tail, (gσ ∗p)(x) resembles p0gσ(x−E0) in a neighborhood of E0. In particular, the unique
zero point of gσ ∗ p in this region is close to E0.

The Gaussian derivative filter allows for a more favorable normalized convolution evaluation
accuracy. On the one hand, the separation between the absolute values of the convolution (gσ∗p)(x)
for x that is ε/2-close to E0 and for x that is ε-far from E0 is Ω(ηεσ−3). So it suffices to pick
ε′1 := O(ηεσ−3). On the other hand, it is easy to show that ‖ĝσ,T ‖1 = Θ(σ−2). This implies that

11



Figure 5: This figure illustrates the convolution (gσ ∗ p)(x) =
∑3

j=0 pjgσ(x − Ej) for σ = 0.25,
(p0, p1, p2, p3) = (0.2, 0.4, 0.25, 0.15) and (E0, E1, E2, E3) = (0.3, 1.5, 2.3, 3.5). The solid curve is
(gσ ∗ p)(x), while the dashed curves are pjgσ(x − Ej) for j = 0, 1, 2, 3 respectively. Note that
(gσ ∗ p)(x) resembles p0gσ(x− E0) in a neighborhood of E0 = 0.3.

the required normalized convolution evaluation accuracy for gσ is
ε′1

‖ĝσ,T ‖1 = O(ηεσ−1). Moreover,

our GSEE and convolution evaluation approaches are general so that they can be easily adapted
to the Gaussian derivative filter function with almost the same parameters (i.e., σ = Õ(∆) and
T = Õ(1/σ)). Therefore, using gσ in our algorithm, the maximal evolution time remains to be
Tmax = Õ(∆−1) and the total evolution time is reduced to Ttot = Õ(η−2ε−2∆).

3 Estimating ground state energy via Gaussian derivative filtering

In this section, we propose a strategy for GSEE based on Gaussian derivative filtering. In Sec-
tion 3.1, we define the Gaussian derivative function and prove a nice property of the convolution
between this filter and the spectral measure p. In Section 3.2, we show how this property leads to
a strategy for GSEE. In Section 3.3, we prove that the Gaussian derivative function can be approx-
imated by a band-limited function, which is crucial for efficient evaluation of the convolution.

3.1 Convolving the spectral measure with a Gaussian derivative filter

Let us start by defining the Gaussian derivative function and demonstrating its properties. Specif-

ically, let σ > 0 be arbitrary, and let fσ(x) = 1√
2πσ

e−
x2

2σ2 be a Gaussian function. The Fourier

transform of fσ is

f̂σ(ξ) = e−
1
2

(σπξ)2
. (11)

Now consider the derivative of fσ, i.e.,

gσ(x) := f ′σ(x) = − 1√
2πσ3

xe−
x2

2σ2 . (12)
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Then the Fourier transform of gσ is

ĝσ(ξ) = 2πiξf̂σ(ξ) = 2πiξe−
1
2

(σπξ)2
. (13)

The following properties of gσ and ĝσ will be useful:

Fact 3.1 (Properties of the Gaussian derivative function).

1. gσ(0) = 0.

2. |gσ(x)| is even, increases monotonically in (−∞,−σ]∪ [0, σ], and decreases monotonically in
[−σ, 0] ∪ [σ,∞).

3. gσ(x) decays exponentially to 0 as x→ ±∞.

4. ĝσ(ξ) decays exponentially to 0 as ξ → ±∞.

Now let us consider the convolution between the filter gσ and the spectral measure p:

(gσ ∗ p)(x) =
N−1∑
j=0

pjgσ(x− Ej) = − 1√
2πσ3

N−1∑
j=0

pj(x− Ej)xe−
(x−Ej)2

2σ2 . (14)

It turns out that if σ is appropriately chosen, then |(gσ ∗ p)(x)| is small only if x is close to E0,
assuming x is at most O(σ)-away from E0:

Lemma 3.2. Let c =
√

2 ln (10/9) ≈ 0.45904, and let ∆ and η be as in the problem formulation in

Section 2. Suppose ε > 0 is small enough such that ε ≤ c ·min

(
0.9∆√

2 ln(9∆ε−1η−1)
, 0.2∆

)
. Then for

σ := min

(
0.9∆√

2 ln (9∆ε−1η−1)
, 0.2∆

)
, (15)

we have

• |(gσ ∗ p)(x)| < 0.6εp0√
2πσ3

, ∀x ∈ [E0 − 0.5ε, E0 + 0.5ε].

• |(gσ ∗ p)(x)| > 0.8εp0√
2πσ3

, ∀x ∈ [E0 − 0.5σ,E0 − ε) ∪ (E0 + ε, E0 + 0.5σ].

Proof. Note that our choice of σ and the condition on ε imply that ε ≤ cσ < 0.5σ. As a consequence,
we do have E0 − 0.5σ < E0 − ε and E0 + ε < E0 + 0.5σ. Thus, the interval in the second bullet is
well-defined. Moreover, we have

|gσ(0.9∆)| = 1√
2πσ3

0.9∆e−
0.81∆2

2σ2

≤ 1√
2πσ3

0.1εη (by the property σ ≤ 0.9∆√
2 ln(9∆ε−1η−1)

in Eq. (15))

≤ 1√
2πσ3

0.1εp0, (16)

where the last step follows from p0 ≥ η.
We prove the first and the second parts of the lemma below.
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Part I. For any x ∈ [E0 − 0.5ε, E0 + 0.5ε], we have

|(gσ ∗ p)(x)| =

∣∣∣∣∣∣p0gσ(x− E0) +
N−1∑
j=1

pjgσ(x− Ej)

∣∣∣∣∣∣ (by Eq. (14))

≤ p0 |gσ(x− E0)|+
N−1∑
j=1

pj |gσ(x− Ej)|

≤ p0 |gσ(x− E0)|+ max
1≤j≤N−1

|gσ(x− Ej)| . (17)

The first term in Eq. (17) can be bounded as follows:

|gσ(x− E0)| ≤ |gσ(0.5ε)| (by |x− E0| ≤ 0.5ε < σ and Property 2 in Fact 3.1)

=
1√

2πσ3
0.5εe−

0.25ε2

2σ2 (by Eq. (12))

≤ 1√
2πσ3

0.5ε. (18)

To upper bound the second term in Eq. (17), first note that for each j ≥ 1,

|x− Ej | ≥ Ej − E0 − 0.5ε (since x ∈ [E0 − 0.5ε, E0 + 0.5ε])

≥ ∆− 0.5ε (since Ej − E0 ≥ E1 − E0 ≥ ∆)

> 0.9∆ (by the assumption ε ≤ 0.2c∆ < 0.1∆)

> σ, (19)

where the last step follows from the property σ ≤ 0.2∆ in Eq. (15). Then we obtain

|gσ(x− Ej)| < |gσ(0.9∆)| (by Eq. (19) and Property 2 in Fact 3.1)

≤ 1√
2πσ3

0.1εp0, (20)

where the second step follows from Eq. (16).
Combining Eqs. (17), (18), and (20), we get that for x ∈ [E0 − 0.5ε, E0 + 0.5ε],

|(gσ ∗ p)(x)| < p0 ·
1√

2πσ3
0.5ε+

1√
2πσ3

0.1εp0 =
0.6εp0√

2πσ3
. (21)

Part II. For any x ∈ [E0 − 0.5σ,E0 − ε) ∪ (E0 + ε, E0 + 0.5σ], we have

|(gσ ∗ p)(x)| =

∣∣∣∣∣∣p0gσ(x− E0) +

N−1∑
j=1

pjgσ(x− Ej)

∣∣∣∣∣∣ (by Eq. (14))

≥ p0 |gσ(x− E0)| −
N−1∑
j=1

pj |gσ(x− Ej)|

≥ p0 |gσ(x− E0)| − max
1≤j≤N−1

|gσ(x− Ej)| . (22)
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The first term in Eq. (22) can be lower bounded as follows:

|gσ(x− E0)| > |gσ(ε)| (by ε < |x− E0| ≤ 0.5σ and Property 2 in Fact 3.1)

=
1√

2πσ3
εe−

ε2

2σ2 (by Eq. (12))

≥ 1√
2πσ3

εe−
c2

2 (by the assumption ε ≤ cσ)

≥ 1√
2πσ3

0.9ε, (23)

where the last step follows from c =
√

2 ln (10/9).
To upper bound the second term in Eq. (22), note that for each j ≥ 1,

|x− Ej | ≥ Ej − E0 − 0.5σ (since x ∈ [E0 − 0.5σ,E0 − ε) ∪ (E0 + ε, E0 + 0.5σ])

≥ ∆− 0.5σ (since Ej − E0 ≥ E1 − E0 ≥ ∆)

≥ 0.9∆ > σ, (24)

where the last two inequalities follow from the property σ ≤ 0.2∆ in Eq. (15). Then we obtain

|gσ(x− Ej)| ≤ |gσ(0.9∆)| (by Eq. (24) and Property 2 in Fact 3.1)

≤ 1√
2πσ3

0.1εp0, (25)

where the last step follows from Eq. (16).
Combining Eqs. (22), (23), and (25), we get that for x ∈ [E0−0.5σ,E0− ε)∪ (E0 + ε, E0 +0.5σ],

|(gσ ∗ p)(x)| > p0 ·
1√

2πσ3
0.9ε− 1√

2πσ3
0.1εp0 =

0.8εp0√
2πσ3

. (26)

The lemma is thus proved.

3.2 Basic strategy for ground state energy estimation

Lemma 3.2 prompts us to develop the following strategy for estimating ground state energy. We
first obtain an estimate Ẽ0 of E0 such that Ẽ0 is O(σ)-close to E0 with high probability. Then we
find a point at which |(gσ ∗p)| has small value in a region [Ẽ0−O(σ), Ẽ0 +O(σ)]. Using Lemma 3.2
we can prove that this point is ε-close to E0 with high probability. Formally, we have

Lemma 3.3. Let ∆, η, ε and δ be as in the problem formulation in Section 2. Suppose ε satisfies
the condition in Lemma 3.2. Let σ be defined as Eq. (15). Suppose Ẽ0 is a random variable such
that

P
[
|Ẽ0 − E0| >

σ

4

]
<
δ

2
. (27)

Let M := dσ/εe+1, and let xj := Ẽ0−0.25σ+(0.5σ/M)·(j−1) for j ∈ [M ]. Suppose h1, h2, . . . , hM
are random variables such that

P
[
∀j ∈ [M ] : |(gσ ∗ p)(xj)− hj | ≤

0.1εη√
2πσ3

]
≥ 1− δ

2
. (28)

Let j∗ = arg min1≤j≤M |hj |. Then we have

P [|xj∗ − E0| > ε] < δ. (29)
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Proof. By our assumptions about Ẽ0 and h1, h2, . . . , hM and the union bound, we get that the
following events happen simultaneously with probability at least 1− δ:

• |Ẽ0 − E0| ≤ 0.25σ.

• |(gσ ∗ p)(xj)− hj | ≤ 0.1εη√
2πσ3 , ∀j ∈ [M ].

In this case, we have x0, x1, . . . , xM ∈ [Ẽ0 − 0.25σ, Ẽ0 + 0.25σ] ⊆ [E0 − 0.5σ,E0 + 0.5σ]. Then
by Lemma 3.2, we have that

• If |xj − E0| ≤ 0.5ε, then

|hj | ≤ |(gσ ∗ p)(xj)|+ |(gσ ∗ p)(xj)− hj | <
0.6εp0√

2πσ3
+

0.1εη√
2πσ3

≤ 0.7εp0√
2πσ3

. (30)

• If |xj − E0| > ε, then

|hj | ≥ |(gσ ∗ p)(xj)| − |(gσ ∗ p)(xj)− hj | >
0.8εp0√

2πσ3
− 0.1εη√

2πσ3
≥ 0.7εp0√

2πσ3
. (31)

Meanwhile, note that x1 ≤ E0 ≤ xM , and |xj+1 − xj | ≤ 0.5ε, ∀j ∈ [M − 1]. So there exists
some j0 ∈ [M ] such that |xj0 − E0| ≤ 0.5ε. This implies that |hj∗ | ≤ |hj0 | <

0.7εp0√
2πσ3 , which in turn

implies that |xj∗ − E0| ≤ ε. This lemma is thus proved.

It remains to show how to generate the random variables Ẽ0 and h1, h2, . . . , hM that satisfy
the conditions Eqs. (27) and (28) respectively. To obtain Ẽ0, we use the GSEE algorithm in [17]
which takes Õ(ε−1) maximal Hamiltonian evolution time to achieve ε-accuracy. Since Ẽ0 only
needs σ

4 -accuracy, this step has Õ(σ−1) maximal evolution time. To obtain h1, h2, . . . , hM , we
first introduce the band-limited version of gσ, denoted as gσ,T , in Section 3.3, and prove that
(gσ ∗ p)(x) ≈ (gσ,T ∗ p)(x) for a small T . Then we design a data structure ConvEval in Section 4
such that this data structure can evaluate gσ,T ∗ p at the points x1, x2, . . . , xM with high accuracy
and confidence after appropriate initialization.

3.3 Gaussian derivative filters with bounded band-limits

In order to efficiently evaluate gσ ∗ p at any given point, we truncate the spectrum of gσ and
construct a T -bandlimit version gσ,T such that

(gσ ∗ p)(x) ≈ (gσ,T ∗ p)(x), ∀x ∈ R. (32)

Specifically, we define gσ,T by restricting ĝσ to [−T, T ] and performing the inverse Fourier transform:

gσ,T (x) :=

∫ T

−T
ĝσ(ξ)e2πixξdξ. (33)

Clearly, gσ,T → gσ as T → ∞. The following lemma shows how to choose T such that gσ,T can
approximate gσ in L∞-norm:

Lemma 3.4. Let ε1 > 0 be arbitrary. Then for

T := π−1σ−1
√

2 ln
(
8π−1ε−1

1 σ−2
)
, (34)

we have

|gσ(x)− gσ,T (x)| ≤ ε1
2
, ∀x ∈ R. (35)
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Proof. By the Fourier inversion theorem, we have

|gσ(x)− gσ,T (x)| =
∣∣∣∣∫ −T
−∞

ĝσ(ξ)e2πiξxdξ +

∫ +∞

T
ĝσ(ξ)e2πiξxdξ

∣∣∣∣
≤
∫ −T
−∞
|ĝσ(ξ)| dξ +

∫ +∞

T
|ĝσ(ξ)| dξ

=2

∫ +∞

T
2πξe−

1
2

(σπξ)2
dξ

=
4

σ2π
e−

1
2
σ2π2T 2

. (36)

By solving the inequality

4

σ2π
e−

1
2
σ2π2T 2 ≤ ε1

2
, (37)

we get that it suffices to take

T ≥ π−1σ−1
√

2 ln
(
8π−1ε−1

1 σ−2
)
. (38)

The following claim shows that the L∞-approximation for gσ implies the L∞-approximation for
gσ ∗ p.

Claim 3.5. Let T be defined as in Lemma 3.4. Then we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| ≤ ε1
2
, ∀x ∈ R.

Proof. For any x ∈ R, we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| =
∣∣∣∣∫ ∞
−∞

(gσ(z)− gσ,T (z))p(x− z)dz
∣∣∣∣

≤
∫ ∞
−∞
|gσ(z)− gσ,T (z)| p(x− z)dz

≤ ε1
2

∫ ∞
−∞

p(x− z)dz

=
ε1
2
, (39)

where the first step follows from the definition of convolution, the section step follows from the
triangle inequality, the third step follows from Lemma 3.4, and the last step follows from the
property of Dirac delta function.

Claim 3.5 implies that in order to estimate (gσ ∗ p)(x) within ε1-accuracy, it suffices to evaluate
(gσ,T ∗ p)(x) within 0.5ε1-accuracy, which can be achieved by the method in Section 4.

4 Complexity of evaluating the convolution

In this section, we focus on evaluating the convolution between a filter function f and the spectral
measure p to within ε-additive error. In Section 4.1, we develop an evaluation method for general
filter functions with bounded band-limits. Then in Section 4.2, we apply the method to the Gaussian
derivative filter used in our GSEE algorithm.
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4.1 Evaluating the convolution via Hadamard tests

For the sake of generality, we will not restrict to a specific filter f but consider arbitrary filters with
bounded band-limits. Specifically, for a parameter T > 0, let fT be a function with band-limit T ,
i.e.,

fT (x) =

∫ T

−T
f̂T (t)e2πitxdt, (40)

where f̂T is the Fourier transform of fT and satisfies f̂T (t) = 0 for all t ∈ (−∞,−T ) ∪ (T,+∞).
Furthermore, we require that f̂T is either continuous in [−T, T ] or a weighted sum of Dirac delta
functions (i.e., fT has a discrete spectrum). Here we will state the results for the former case, and
the reader can easily generalize them to the latter case.

Given such a function fT , we can define a probability density ν in terms of its Fourier weights:

ν(t) =
|f̂T (t)|
‖f̂T ‖1

, ∀t ∈ [−T, T ]. (41)

Moreover, let φ(t) be the phase of f̂T (t), i.e., f̂T (t) = |f̂T (t)|ei2πφ(t). Then we have that

fT (x) =

∫ T

−T
‖f̂T ‖1e2πi(tx+φ(t))ν(t)dt. (42)

Now given a quantum state ρ, a Hamiltonian H and a parameter t ∈ [−T, T ], we define two
random variables Xt and Yt as follows. Let bI and bS† be the measurement outcome of the circuit
in Figure 3 with τ = 2πt and W = I or S† (where S is the phase gate), respectively. Then we
define Xt = (−1)bI and Yt = (−1)bS† . As mentioned in Section 2, we have that

E [Xt] = Re
(

tr
[
ρe−2πiHt

])
, E [Yt] = Im

(
tr
[
ρe−2πiHt

])
. (43)

Now given a point x ∈ R, we define the random variable Z(x) as follows. Let t be a random
variable with probability density function ν. Then we define

Z(x) := ‖f̂T ‖1 · e2πi(tx+φ(t)) · (Xt + iYt) . (44)

It turns out that Z(x) is an unbiased estimator of the convolution fT ∗ p at point x:

Lemma 4.1. For the random variable Z(x) defined as Eq. (44), we have that

E[Z(x)] = (fT ∗ p)(x), ∀x ∈ R. (45)

Proof. Let us first consider the conditional expectation E[Z(x)|t = t] for some t ∈ [−T, T ]. By
Eq. (43) and the definition of Z(x) in Eq. (44), we get

E[Z(x)|t = t] = E
[
‖f̂T ‖1e2πi(tx+φ(t))(Xt + iYt)

∣∣t = t
]

= ‖f̂T ‖1e2πi(t0x+φ(t)) tr
[
ρe−2πiHt

]
. (46)
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By the law of total expectation, we have

E[Z(x)] =

∫ T

−T
E[Z(x)|t = t] · P [t = t] dt

=

∫ T

−T
‖f̂T ‖1e2πi(tx+φ(t)) tr

[
ρe−2πiHt

]
ν(t)dt

=

∫ T

−T
f̂T (t)e2πitx tr

[
ρe−2πiHt

]
dt, (47)

where the last step follows from the definition of ν in Eq. (41) and the definition of φ(t).
It remains to prove that the above expression indeed coincides with fT ∗ p(x). Indeed, we have

that:

(fT ∗ p)(x) =

∫ ∞
−∞

p(x− y)fT (y)dy

=

∫ ∞
−∞

∫ T

−T
p(x− y)f̂T (t)e2πitydtdy

=

∫ T

−T
f̂T (t)dt

∫ ∞
−∞

p(x− y)e2πitydy. (48)

By the definition of p(x) in Eq. (7), we have that∫ ∞
−∞

p(x− y)e2πitydy =

∫ ∞
−∞

∑
k≥0

pkδ(x− y − Ek)e2πitydy =
∑
k≥0

pke
2πit(x−Ek), (49)

where the last step follows from the integration of Dirac delta function. Then, it implies that

(fT ∗ p)(x) =

∫ T

−T
f̂T (t)dt ·

∑
k≥0

pke
2πit(x−Ek) =

∫ T

−T
f̂T (t)e2πitx tr

[
ρe−2πiHt

]
dt, (50)

where the last step follows from tr
[
ρe−2πiHt

]
=
∑

k≥0 pke
−2πitEk .

Comparing Eqs. (47) and (50), we conclude that E [Z(x)] = (fT ∗ p)(x) for all x ∈ R. The
lemma is thus proved.

With Lemma 4.1 established, it is now straightforward to analyze how many samples we need
to estimate the function fT ∗ p at various points within a target accuracy.

Lemma 4.2 (Sample complexity of the convolution evaluation). Let {(t(i), X(i), Y (i))}Si=1 be S
i.i.d. samples such that t(i) ∼ ν, X(i) ∼ Xti and Y (i) ∼ Yti, where ν is defined as Eq. (41), and
Xt and Yt are the measurement outcome of the circuit in Figure 3 with τ = 2πt and W = I or S,
respectively. Let x1, x2, . . . , xM ∈ R be arbitrary. For each j ∈ [M ], let Zj be defined as follows:

Zj :=
‖f̂T ‖1
S

S∑
i=1

e2πi(t(i)xj+φ(t(i))) · (X(i) + iY (i)). (51)

Then for any ε1 > 0 and δ1 ∈ (0, 1), letting

S :=

⌈
‖f̂T ‖21 ln (4M/δ1)

ε21

⌉
, (52)
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we have

P
[
∀j ∈ [M ] : |Zj − (fT ∗ p)(xj)| ≤ ε1

]
≥ 1− δ1. (53)

Proof. Recall that Z(x) = ‖f̂T ‖1 · e2πi(tx+φ(t)) · (Xt + iYt) for any x ∈ R. Then Z̄j is the empirical
mean of S i.i.d. samples of Z(xj) that correspond to {(t(i), X(i), Y (i))}Si=1, for each j ∈ [M ].
Since Xt and Yt take values in {1,−1}, we know that Re (Z(x)) and Im (Z(x)) take values in
[−‖f̂T ‖1, ‖f̂T ‖1]. It then follows from Hoeffding’s inequality [29] that for our choice of S in Eq. (52),
for any j ∈ [M ], it holds that

P
[
|Re

(
Zj
)
− E[Re (Z(xj))]| >

ε1√
2

]
<

δ1

2M
, (54)

P
[
| Im

(
Zj
)
− E[Im (Z(xj))]| >

ε1√
2

]
<

δ1

2M
. (55)

Then by the triangle inequality and union bound, we get

P
[
|Zj − E[Z(xj)]| > ε1

]
<
δ1

M
. (56)

Meanwhile, by Lemma 4.1, we know that

E[Z(xj)] = (fT ∗ p)(xj). (57)

Thus, we have

P
[
|Zj − (fT ∗ p)(xj)]| > ε1

]
<
δ1

M
. (58)

By a union bound over all j ∈ [M ], we get that

P
[
∃j ∈ [M ] : |Zj − (fT ∗ p)(xj)]| > ε1

]
< δ1. (59)

Remark 4.3. Note that Zj is a complex number in general, but (fT ∗ p)(xj) is real provided that
fT is real. In this case, we can re-define Zj as the real part of the right-hand side of Eq. (51) and
Lemma 4.2 will still hold. We envision that in some scenarios, it is useful to have a complex filter
fT , and hence define Zj as Eq. (51) for sake of generality.

Now we give a data structure ConvEval in Algorithm 1 for evaluating the convolution fT ∗ p
at multiple points.

Lemma 4.2 immediately implies that:

Corollary 4.4. Let x1, x2, . . . , xM ∈ R be arbitrary. Suppose the data structure ConvEval is
initialized with parameters (fT , ε, δ,M). Let hj be the output of the procedure ConvEval.Eval(xj)
for j ∈ [M ]. Then we have

P [∀j ∈ [M ] : |(fT ∗ p)(xj)− hj | ≤ ε] ≥ 1− δ. (60)
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Algorithm 1 Convolution evaluation data structure.

1: data structure FilterSampler
2: Init(fT ) . Initialize for the filter fT
3: Sample() . Sample ξ ∈ R with probability ∝ |f̂T (ξ)|
4: Norm() . Return ‖f̂T ‖1
5: end data structure
6:

7: data structure ConvEval
8: members
9: C(t,W ) . Run the circuit in Figure 3 with τ = 2πt and W = I or S†

10: {(t(i), z(i))}i∈[S] ⊂ R× C . Fourier samples
11: FilterSampler FS . Filter function’s sampler
12: end members
13:

14: procedure Init(fT , ε, δ, M) . ε is the target accuracy, δ is the tolerable failure probability,
M is the maximal number of points at which the convolution is evaluated

15: FS.Init(fT )
16: L← FS.Norm()

17: S ←
⌈
L2 ln(4M/δ)

ε2

⌉
. Lemma 4.2

18: for i← 1, 2, . . . , S do
19: t(i) ← FS.Sample()
20: x(i) ← C(t(i), I) . Hadamard test
21: y(i) ← C(t(i), S†) . Hadamard test

22: z(i) ← L · e2πiφ(t(i))(x(i) + iy(i))
23: end for
24: end procedure
25:

26: procedure Eval(x) . Approximate (fT ∗ p)(x) within accuracy ε

27: Z ← 1
S

∑
i∈[S] e

2πit(i)x · z(i)

28: return Z
29: end procedure
30: end data structure

Lemma 4.5 (Running time of the convolution evaluation data structure). Suppose the data struc-
ture FilterSampler runs in O(1)-time. Then, the data structure ConvEval in Algorithm 1 has
the following running times:

• Procedure Init(fT , ε, δ,M) has O(T ) maximal evolution time and O(ST ) total evolution time,
where S = O(ε−2‖f̂T ‖21 log

(
δ−1M

)
).

• Procedure Eval(x) has O(S) classical post-processing time.

Proof. The ConvEval.Init procedure runs the Hadamard test circuit 2S times to get the sam-

ples
{

(x(i), y(i))
}S
i=1

. Since the filter function fT has spectrum bounded in [−T, T ], the maximal
evolution time is 2πT and the total evolution time is at most 4πST .

The ConvEval.Eval procedure then uses the S samples to compute the estimate of (fT ∗p)(x).
Moreover, the computation is classical and elementary.
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4.2 Application to Gaussian derivative filters

In this section, we apply the data structure ConvEval to the band-limited Gaussain derivative
filter gσ,T :

gσ,T (x) =

∫ T

−T
ĝσ(ξ)e2πixξdξ = 2πi

∫ T

−T
ξe−

1
2

(σπξ)2+2πixξdξ. (61)

To apply Lemma 4.2, we first bound the L1-norm of its spectrum.

Claim 4.6. Let gσ,T be defined as Eq. (61). Then we have ‖ĝσ,T ‖1 ≤ 4
πσ2 .

Proof. By the fact that ĝσ,T (ξ) = ĝσ(ξ)1|ξ|≤T and direct calculation, we obtain

‖ĝσ,T ‖1 ≤ ‖ĝσ‖1 =

∫ +∞

−∞

∣∣∣2πiξe−
1
2

(σπξ)2
∣∣∣ dξ =

∫ +∞

0
4πξe−

1
2

(σπξ)2
dξ =

4

πσ2
. (62)

Then we get the following corollary on the sample complexity of evaluating gσ,T ∗p on M points.

Corollary 4.7. Let ε1 > 0, δ1 ∈ (0, 1) and x1, x2, . . . , xM ∈ R be arbitrary. Suppose the data
structure ConvEval is initialized with parameters (gσ,T , ε1, δ1,M). Let hj be the output of the
procedure ConvEval.Eval(xj) for j ∈ [M ]. Then we have

P [∀j ∈ [M ] : |(gσ,T ∗ p)(xj)− hj | ≤ ε1] ≥ 1− δ1. (63)

Furthermore, it take S = O(ε−2
1 σ−4 log (M/δ1)) samples from Hadamard tests to obtain h1, h2, . . . ,

hM .

Proof. Claim 4.6 implies ‖ĝσ,T ‖1 = O(σ−2). Thus the procedure ConvEval.Init(gσ,T , ε1, δ1,M)
draws S = O(ε−2

1 ‖ĝσ,T ‖21 log (M/δ1)) = O(ε−2
1 σ−4 log (M/δ1)) samples from Hadamard tests. Then

Eq. (63) follows immediately from Corollary 4.4.

5 Main Theorem

In this section, we describe our main results about ground state energy estimation. We first present
a Õ(∆−1)-depth algorithm for GSEE in Algorithm 2.

Then we prove the following theorem:

Theorem 5.1 (Ground state energy estimation). Let H =
∑N−1

j=0 Ej |Ej〉〈Ej | be a Hamiltonian
such that E0 < E1 ≤ E2 ≤ · · · ≤ EN−1 are the eigenvalues of H, and the |Ej〉’s are orthonormal
eigenstates of H. Suppose we are given access to the Hamiltonian evolution eiHt for any t ∈ R.
Let ∆ > 0 be given such that ∆ ≤ E1 − E0. Moreover, suppose we can prepare a state ρ such that
〈E0| ρ |E0〉 ≥ η for known η > 0.

Then, for sufficiently small ε > 0 and any δ ∈ (0, 1), there exists an algorithm that estimates
E0 within accuracy ε with probability at least 1− δ such that:

• The maximal Hamiltonian evolution time is Õ(∆−1);

• The total Hamiltonian evolution time is Õ(η−2ε−2∆);

• The classical running time is Õ(η−2ε−3∆3).
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Algorithm 2 Low-depth ground state energy estimation algorithm.

1: procedure GSEE(ε, δ, Ẽ0, ∆, η)

2: σ ← min

(
0.9∆√

2 ln(9∆ε−1η−1)
, 0.2∆

)
3: M ← dσ/εe+ 1, ε̃← 0.1εη√

2πσ3

4: T ← π−1σ−1
√

2 ln (8π−1ε̃−1σ−2) . Filter band-limit (Lemma 3.4)
5: ConvEval.Init(gσ,T , ε̃/2, δ/2, M) . Algorithm 1
6: for j = 1, 2, . . . ,M do
7: xj ← Ẽ0 − 0.25σ + (0.5σ/M) · (j − 1)
8: hj ← ConvEval.Eval(xj) . Algorithm 1
9: end for

10: j∗ ← arg min1≤j≤M |hj |.
11: return xj∗

12: end procedure

Proof. Algorithm: Suppose ε > 0 is small enough such that it satisfies the condition in Lemma
3.2. We first run the algorithm in [17] to obtain a coarse estimate Ẽ0 of E0 such that Ẽ0 is σ/4-close
to E0 with probability at least 1− δ/2, where σ is defined as Eq. (15). Then we run Algorithm 2
with parameters (ε, δ, Ẽ0, η) and return its output xj∗ as the final estimate of E0.

Correctness: By construction, Ẽ0 satisfies Eq. (27) in Lemma 3.3. Meanwhile, by Claim 3.5
and the choice of T in Algorithm 2, we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| ≤ ε̃

2
, ∀x ∈ R, (64)

Meanwhile, since ConvEval is initialized with parameters (gσ,T , ε̃/2, δ/2,M) in Algorithm 2, by
Corollary 4.7, we get

P
[
∀j ∈ [M ] : |(gσ,T ∗ p)(xj)− hj | ≤

ε̃

2

]
≥ 1− δ

2
. (65)

Then it follows from Eqs. (64) and (65) and the triangle inequality that

P [∀j ∈ [M ] : |(gσ ∗ p)(xj)− hj | ≤ ε̃] ≥ 1− δ

2
, (66)

which coincides with Eq. (28) in Lemma 3.3, given the choice of ε̃ in Algorithm 2. Now with both
of its conditions met, Lemma 3.3 implies that the output of Algorithm 2, i.e., xj∗ , is ε-close to E0

with probability at least 1− δ, as desired.
Cost analysis: First, we run the algorithm in [17] to obtain Ẽ0. Since σ = Ω̃(∆), this step has

maximal evolution time Õ(∆−1), total evolution time Õ(∆−1η−2), and classical post-processing
time Õ(∆−1η−2).

Then, in Line 5 of Algorithm 2, we run ConvEval.Init(gσ,T , ε̃/2, δ/2, M) to initialize the
data structure ConvEval in Algorithm 1. We choose the parameters as follows:

• ε̃ = Ω(εησ−3) = Ω̃(εη∆−3),

• T = Õ(σ−1) = Õ(∆−1),

• M = Θ(σε−1) = Θ̃(∆ε−1).
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Thus, by Corollary 4.7, we have

S = Θ̃(ε−2
1 σ−4) = Θ̃(ε−2η−2∆6 ·∆−4) = Θ̃(ε−2η−2∆2). (67)

The for-loop in Procedure ConvEval.Init of Algorithm 1 draws S samples from the Hadamard
test circuit. The sampling process has the maximal evolution time 2πT = Õ(∆−1) and total
evolution time at most O(TS) = Õ(ε−2η−2∆).

Next, in Line 6 of Algorithm 2, we call the procedure ConvEval.EvalM times to evaluate the
convolutions at x1, x2, . . . , xM . Each evaluation takes O(S) = Õ(ε−2η−2∆2) classical time. Hence,
this step takes O(MS) = Õ(∆ε−1 · ε−2η−2∆2) = Õ(ε−3η−2∆3) classical time.

Combining these steps together, we get that the whole GSEE algorithm takes:

• maximal evolution time Õ(∆−1),

• total evolution time Õ(∆−1η−2 + ε−2η−2∆) = Õ(ε−2η−2∆), and

• classical post-processing time Õ(ε−3η−2∆3),

as claimed.

As described in the introduction, it is favorable to be able to reduce the total evolution time
at the cost of increased maximal evolution time (or circuit depth). This allows one to make the
most use of the available circuit depth afforded by the quantum architecture. Such a feature is
desirable in the era of early fault-tolerant quantum computing where there is likely to be a limit to
the available coherence of the device [30]. Fortunately, this feature follows directly from the above
theorem and we present it as a corollary below. Note that in Theorem 5.1, ∆ is merely a lower
bound on the true spectral gap ∆true := E1 −E0 of Hamiltonian H, not necessarily ∆true itself. In
fact, ∆ can range from Õ(ε) (in order to satisfy the condition in Lemma 3.2) to ∆true. By setting
∆ = Õ(εα∆1−α

true ) with α ∈ [0, 1], we obtain:

Corollary 5.2. Let H =
∑N−1

j=0 Ej |Ej〉〈Ej | be a Hamiltonian such that E0 < E1 ≤ E2 ≤ · · · ≤
EN−1 are the eigenvalues of H, and the |Ej〉’s are orthonormal eigenstates of H. Let ∆true =
E1−E0 be the spectral gap of H. Suppose we are given access to the Hamiltonian evolution eiHt for
any t ∈ R. Moreover, suppose we can prepare a state ρ such that 〈E0| ρ |E0〉 ≥ η for known η > 0.

Then for any α ∈ [0, 1], for sufficiently small ε > 0 and any δ ∈ (0, 1), there exists an algorithm
that estimates E0 within accuracy ε with probability at least 1− δ such that:

• The maximal Hamiltonian evolution time is Õ(ε−α∆−1+α
true );

• The total Hamiltonian evolution time is Õ(η−2ε−2+α∆1−α
true );

• The classical running time is Õ(η−2ε−3+α∆3−α
true ).

In particular, setting α = 0 or 1 leads to:

• ∆ = ∆true, for which Theorem 5.1 yields an algorithm with maximal evolution time Õ(∆−1
true)

and total evolution time Õ(η−2ε−2∆true); or

• ∆ = Õ(ε), for which Theorem 5.1 yields an algorithm with maximal evolution time Õ(ε−1)
and total evolution time Õ(η−2ε−1) (i.e., the Heisenberg limit).

For general ∆ = Õ(εα∆1−α
true ) with α ∈ [0, 1], Theorem 5.1 yields an algorithm with maximal

evolution time Õ(ε−α∆−1+α
true ) and total evolution time Õ(η−2ε−2+α∆1−α

true ). In other words, tuning
∆ between the two extremes gives a trade-off between the circuit depth and total runtime of the
algorithm.
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6 Discussion and Outlook

In this work we have introduced a new quantum algorithm (Algorithm 2) for estimating the ground
state energy of a Hamiltonian. The main innovation is that the maximum circuit depth required
by this algorithm is governed by the gap of the Hamiltonian rather than the target accuracy.
Hamiltonians describing chemical systems typically have gaps that are several orders of magnitude
larger than chemical accuracy (the standard target accuracy in quantum chemistry). Accordingly,
the algorithm developed in this work can reduce the required circuit depths of ground state energy
estimation by several orders of magnitude. This lowers the quantum resources required for solving
industrially-relevant quantum chemistry problems, which may enable quantum advantage using
early fault-tolerant quantum computers. The cost of reducing the circuit depth is an increase in the
overall runtime of the algorithm. As with other recent ground state energy estimation algorithms
[17], the algorithm is “embarrassingly parallel”; the runtime can be reduced by parallelizing the
sample gathering accross multiple quantum computers (trading time resources for space resources).
As shown in Corollary 5.2, as the quantum computer is able to implement deeper quantum circuits
(say, through improvements in scaling the fault-tolerant quantum architecture), we are able to
convert this available coherence into a runtime reduction. This ability to trade circuit depth for
runtime is an important feature of algorithms designed for early fault-tolerant quantum computing
[31, 32, 33, 18].

Beyond direct application of the algorithm for achieving quantum advantage, our work helps
to establish the paradigm of developing quantum algorithms using the tools of classical signal
processing [17, 34, 33]. The quantum computer generates a stochastic signal that encodes properties
of a matrix of interest. This stochastic signal can be processed to learn the matrix properties of
interest. This paradigm will be essential in the development of algorithms for early fault-tolerant
quantum computers. Quantum computations with such architectures will be error prone, generating
noisy signals. The tools of classical signal processing have been designed to handle such noisy signals
and can aid in the design and analysis of robust quantum algorithms [32, 35].

We now discuss several directions for future work. One requirement of the algorithm is that
a lower bound on the energy gap must be specified. There exist quantum chemistry methods for
estimating the gap (e.g. using the ORCA software [25, 26] as we did for our numerical compar-
isons). However, such estimates can become inaccurate for large systems. It may be helpful to
incorporate a step into the quantum algorithm that estimates this gap. Although this estimation is
computationally hard in general [36], many physical systems of interest have structure that make
the estimation feasible.

In addition to estimating the gap, it may be possible to increase the size of an “effective gap” (i.e.
the energy separation between the ground state and the lowest eigenvalue for which the input state
has significant overlap with its eigenstate). One approach would be to exploit known symmetries
in the Hamiltonian to prepare an input state that realizes a larger effective gap. Another approach
would be to apply state preparation boosters [33] that filter out low-lying excited states. Such
approaches would help to reduce the circuit depth required for energy estimation (by increasing
the effective gap), but may increase the circuit depth cost of state preparation. Further work is
needed to investigate such approaches and understand the trade-offs.

As with all ground state energy estimation algorithms, the performance of our algorithm depends
on the overlap of the input state with the ground state (see Table I in [9]). A concern with using
quantum computers to solve problems in quantum chemistry is that for large systems, we are unable
to prepare sufficiently good ground state approximations [37]. This is known as the orthogonality
catastrophe [38] or the Van Vleck catastrophe [39, 40]. An important direction for future work is
the development of well-motivated quantum heuristics for approximating ground states.
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In this work, we did not consider the impact of implementation error on the performance of the
algorithm. We expect that our algorithm is able to tolerate some degree of variation between the
ideal Hadamard tests and the implemented Hadamard tests. Furthermore, we believe the algorithm
can be operated so as to accommodate such deviations. We leave for future work, the investigation
of robust quantum algorithms for ground state energy estimation.

In this work we have introduced a framework for implementing ground state energy estimation
using tunable-depth quantum circuits. As shown in Figure 1, the algorithms developed in this work
are applicable to the maximum circuit depths ranging from Õ(1/∆) to Õ(1/ε). We leave to future
work the development of tunable-depth quantum algorithms outside of this region. While we have
made progress in establishing upper bounds over a range of circuit depths, an important future
direction is to establish lower bounds on depth-limited ground state energy estimation. These
directions would further the research program of characterizing the performance and limitations of
using depth-limited quantum computers to estimate properties of Hamiltonians.

The methods introduced here may help to bring the target of useful quantum computing closer
to the present. Yet, there is still much work needed to carry out detailed resource estimations that
predict the onset of quantum advantage using methods such as those we have introduced. More
broadly, or hope is that this work contributes to the general understanding of how to use quantum
computers given practical constraints on their capabilities and might inspire the development of
quantum algorithms in other application domains.
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A Comparison to the approach of Lin et al

The main advantage of our approach compared to [17] is in the minimal evolution time required to
achieve a desired precision. Indeed, in their approach the evolution time scales inverse linearly with
the desired precision. For our approach, the minimal evolution time is dictated by the reciprocal
of the energy gap of the Hamiltonian and any additional precision we wish to attain only causes
a poly-logarithmic factor in the evolution time. Of course, this comes at the expense of a higher
sample complexity at smaller evolution times. This trade-off between the evolution time and the
sample complexity is discussed in Corollary 5.2.

Note that this improvement in the minimal evolution time comes from two conceptual differences
in our approach compared to [17]: the choice of the filter function (Heaviside versus Gaussian
derivative) and how we then infer the value of the ground state energy from the convolution (jump
versus 0 of derivative).

Both our approach and that of [17] require a truncated approximation of the underlying filter
function to implement the algorithm with only finite-time evolutions. However, as the Heaviside
function has a jump at 0, the degree of the Fourier series necessarily has to increase the better we
want the approximation outside a small neighborhood of 0 to be. For instance, in [17] they find an
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approximation Fd,ε such that for d = O(ε−1 log
(
ε−1δ−1

)
) and

Fd,ε(x) =
1√
2π

d∑
k=−d

F̂d,ε,ke
ikx, (68)

we have4

1. − δ
2 ≤ Fd,ε(x) ≤ 1 + δ for all x ∈ R.

2. |Fd,ε(x)−Θ(x)| ≤ δ for all x ∈ [−π + ε,−ε] ∪ [ε, π − ε].

Note that the evolution time required to implement the representation in Eq. (68) is O(d). This
scales logarithmically with the precision with which we approximate the Heaviside function outside
of the intervals [−π + ε,−ε] ∪ [ε, π − ε] and inverse-polynomially in size of the interval around 0,
(−ε, ε), where we are not guaranteed that the two functions are close.

The approach of [17] consists of finding the smallest point x such that (p ∗ Fd,ε)(x) ≥ η. If we
were convolving with the Heaviside function, this would correspond to the ground state energy.
But we will now argue that the neighborhood around 0 for which we have the approximation can
shift where the jump occurs. Indeed, note that for x ∈ [E0 − ε, E0 + ε] and ε ≤ ∆ we have that:

(p ∗ Fd,ε)(x) = (p ∗Θ)(x) +

∫ ε

−ε
p(x− y)(Fd,ε(y)−Θ(y))dy +

∫
[−1,1]\[−ε,ε]

p(x− y)(Fd,ε(y)−Θ(y))dy

Note that as |Fd,ε(x)−Θ(x)| ≤ δ for all x ∈ [−π + ε,−ε] ∪ [ε, π − ε] we have that∣∣∣∣∣∣∣
∫

[−1,1]\[−ε,ε]

p(x− y)(Fd,ε(y)−Θ(y))dy

∣∣∣∣∣∣∣ ≤ δ. (69)

However, as we only have the promise that − δ
2 ≤ Fd,ε(x) ≤ 1+ δ for points in [−ε, ε], we will not be

able to infer the precise point of the jump at a precision larger than O(ε) with this approach. This
is because the residual integral term (i.e. the one over (−ε, ε) in Eq. (69)) will cause fluctuations
in this interval and we will not be able to pin down the jump.

On the other hand, by choosing our filter to be Gaussian derivatives, we are able to obtain
a good approximation everywhere on the real line. Furthermore, by choosing the zeros of the
derivative as criteria, we only need to make sure that the standard deviation is small enough to
separate different eigenvalues. This way we obtain a smaller maximal evolution time.

B Results about Gaussian filters

In this Appendix, we analyze the cost of evaluating the convolution of the spectral measure p(x) =∑N−1
j=0 pjδ(x − Ej) and a Gaussian filter. Although our GSEE algorithm is based on Gaussian

derivative convolution instead of Gaussian convolution, we believe that the latter is still useful for
many tasks. Hence it is worth mentioning the following results.

Recall that for a Gaussian probability distribution function (pdf) fσ, defined as

fσ(x) =
1√
2πσ

e−
1
2
x2

σ2 , (70)

4note that [17] adopts different notations. There δ is the precision with which we approximate the ground state
energy, and here it is ε.
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we have that its Fourier transform f̂σ is given by

f̂σ(t) = e−
1
2

(σπt)2
. (71)

That is, it just corresponds to the pdf of another Gaussian random variable up to a
√

π
2σ factor.

Our first step is to define a truncated version of the pdf fσ stemming from the Fourier transform.
Given a parameter T > 0, we define fσ,T to be given by:

fσ,T (x) :=

∫ T

−T
f̂σ(t)e2πixtdt. (72)

Clearly, as T → ∞ we have that fσ,T (x) converges to fσ(x). The following lemma shows how to
choose T such that the fσ,T can approximate fσ in L∞-norm:

Lemma B.1. Let ε > 0 be arbitrary. Then for

T := σ−1
√

ln (ε−1σ−1), (73)

we have that

|fσ(x)− fσ,T (x)| ≤ ε

2
, ∀x ∈ R. (74)

Proof. By the Fourier inversion theorem we have

|fσ(x)− fσ,T (x)| =
∣∣∣∣∫ −T
−∞

f̂(t)e2πixtdt+

∫ +∞

T
f̂(t)e2πixtdt

∣∣∣∣
≤
∫ −T
−∞
|f̂(t)|dt+

∫ +∞

T
|f̂(t)|dt

= 2

∫ +∞

T
e−

1
2

(σπt)2
dt

=

√
2

π
σ−1 · PX∼N (0,(πσ)−2)[|X| > T ]

≤
√

2

π
σ−1 · 2e−T 2π2σ2/2,

where the third step follows from Eq. (71), and the forth step follows from the concentration of
Gaussian random variables.

By solving the following inequality:√
2

π
σ−1 · 2e−T 2π2σ2/2 ≤ ε

2
,

we get that it suffices to take:

T ≥ σ−1
√

ln (σ−1ε−1). (75)
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The L∞-approximation for fσ implies the L∞-approximation for fσ ∗ p. That is, letting T be
defined as in Lemma B.1, we have that

|(fσ ∗ p)(x)− (fσ,T ∗ p)(x)| ≤ ε

2
, ∀x ∈ R. (76)

Therefore, in order to estimate (fσ ∗ p)(x) within ε-accuracy, it suffices to evaluate (fσ,T ∗ p)(x)
within 0.5ε-accuracy, which can be achieved by applying the data structure ConvEval to the
band-limited Gaussain filter fσ,T .

Specifically, to apply Lemma 4.2 to fσ,T , we first bound the L1-norm of its spectrum f̂σ,T as
follows: ∥∥∥f̂σ,T∥∥∥

1
=

∫ T

−T
e−

1
2

(σπt)2
dt ≤

∫ ∞
−∞

e−
1
2

(σπt)2
dt =

√
2

π

1

σ
. (77)

Then by Corollary 4.4 and Lemma 4.5, we get the following result on the cost of evaluating
fσ,T ∗ p on M points:

Corollary B.2. Let ε > 0, δ ∈ (0, 1) and x1, x2, . . . , xM ∈ R be arbitrary. Suppose the data
structure ConvEval is initialized with parameters (fσ,T , ε/2, δ,M). Let hj be the output of the
procedure ConvEval.Eval(xj) for j ∈ [M ]. Then we have

P
[
∀j ∈ [M ] : |(fσ,T ∗ p)(xj)− hj | ≤

ε

2

]
≥ 1− δ. (78)

Furthermore, it take S = O(ε−2σ−2 log (M/δ)) samples from Hadamard tests to obtain h1, h2, . . . ,
hM . Moreover, the maximal evolution time in these Hadamard tests is Õ(σ−1).

Combining Eqs. (76) and (78) and using the triangle inequality, we obtain that

P [∀j ∈ [M ] : |(fσ ∗ p)(xj)− hj | ≤ ε] ≥ 1− δ. (79)

That is, the hj ’s in Corollary B.2 are accurate estimates of the (fσ ∗ p)(xj)’s with high probability.
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