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Dmitri Iouchtchenko1,2,∗, Jérôme F Gonthier3, Alejandro Perdomo-Ortiz2 and Roger G Melko1,4

1 Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2 Zapata Computing Canada Inc., 325 Front St W, Toronto, Ontario M5V 2Y1, Canada
3 Zapata Computing Inc., 100 Federal Street, Boston, MA 02110, United States of America
4 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
∗ Author to whom any correspondence should be addressed.

E-mail: diouchtc@uwaterloo.ca

Keywords: quantum tomography, classical shadow tomography, machine learning, neural networks, restricted Boltzmann machines,
recurrent neural networks

Abstract
It is believed that one of the first useful applications for a quantum computer will be the
preparation of groundstates of molecular Hamiltonians. A crucial task involving state preparation
and readout is obtaining physical observables of such states, which are typically estimated using
projective measurements on the qubits. At present, measurement data is costly and
time-consuming to obtain on any quantum computing architecture, which has significant
consequences for the statistical errors of estimators. In this paper, we adapt common neural
network models (restricted Boltzmann machines and recurrent neural networks) to learn complex
groundstate wavefunctions for several prototypical molecular qubit Hamiltonians from typical
measurement data. By relating the accuracy ε of the reconstructed groundstate energy to the
number of measurements, we find that using a neural network model provides a robust
improvement over using single-copy measurement outcomes alone to reconstruct observables.
This enhancement yields an asymptotic scaling near ε−1 for the model-based approaches, as
opposed to ε−2 in the case of classical shadow tomography.

1. Introduction

Finding the groundstate of a molecular Hamiltonian on a classical computer is a difficult task, but quantum
phase estimation on a fault-tolerant quantum computer is known to efficiently obtain the groundstate
energy under reasonable conditions [1, 2]. However, fault tolerance remains out of reach; to date, only noisy
intermediate-scale quantum (NISQ) devices have been created, where the deep circuits required for phase
estimation cannot be realized. Despite their shortcomings, it is believed that NISQ devices can still be used to
assist classical ones in the task of calculating molecular groundstate energies [3]. Current approaches involve
transforming the Hamiltonian from a second-quantized fermionic representation into qubit form [4], the
groundstate of which could then be prepared on a quantum computer using strategies such as the variational
quantum eigensolver (VQE) or other hybrid quantum–classical algorithms [5]. Once the groundstate—or a
suitable approximation—is prepared, expectation values of physical observables can be estimated by
performing measurements on the qubits.

State preparation and measurement times may vary depending on the specific experimental
implementation. Regardless, given the significant hardware limitations in present-day quantum devices, it is
crucial to extract information about physical observables as efficiently as possible using the available
resources, including the collected measurement outcomes. The gold standard for probing an experimental
state is quantum state tomography, which aims to accurately reconstruct the full wavefunction or density
matrix, allowing for the general extraction of the energy and other properties. However, full state
tomography comes at the cost of exponential growth of classical resources with the number of qubits, which
limits its applicability to only the smallest of systems.
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Beyond exact tomography, there are several promising protocols for the efficient analysis of measurement
data provided by a quantum computer. In particular, it is possible to efficiently compute the expectation
value of typical observables directly from samples, using single-qubit factorable positive operator valued
measures (POVMs) [6] without a model-based tomographic reconstruction, or using classical shadow
tomography [7–9]. In the case of typical observables like the energy, the sample complexity (defined as the
number of copies S of the quantum state necessary to achieve an additive error ε) scales as ε−2 for classical
shadows [7].

One can also explore the accuracy of estimator reconstruction when measurement outcomes are used to
train a generative model, instead of computing the expectation value directly from the samples. Motivated by
techniques in machine learning, models based on neural networks can serve as powerful wavefunction
ansatzes that are readily trainable from data [6, 10–12]. The goal of training a generative model is to learn the
salient elements of the quantum state, while hopefully requiring fewer resources than state tomography when
scaling to larger numbers of qubits [13]. Indeed, it was shown in [14] that training a restricted Boltzmann
machine (RBM) [15, 16] and then sampling it (the ‘generative’ step) significantly reduced the variance of the
energy estimator of some simple molecular Hamiltonians, at the possible cost of a bias due to training
imperfections. Other approaches involving neural networks have recently been used for quantum control
and sensing [17].

In this paper, we implement two different generative models as wavefunction anstatzes: complex
RBMs [10, 16] and complex recurrent neural networks (RNNs) [12]. We use these models to reconstruct the
groundstates of standard molecular Hamiltonians for LiH, BeH2, and H2 from synthetic single-copy Pauli
measurement data. We perform a comparison of the errors in the energy and—when possible—the fidelity,
between the models, maximum likelihood pure state tomography, and classical shadows. We find that for
both the RBM and RNN, the sample complexity scales approximately as ε−1, as compared to ε−2 for classical
shadows. Our results suggest that generative models may offer a robust advantage in reconstructing physical
observables in cases where data is limited, as in present-day quantum computing devices.

2. Models

In this section, we provide details of the generative models that we use to reconstruct the molecular
groundstates from qubit measurement data. We assume that, for a given basis, each projective measurement
outcome is a vector with N binary values (one per qubit), and that these outcomes are distributed according
to the Born rule. However, unlike standard generative models used for classical machine learning tasks, we
require that our models are capable of fully describing a pure quantum state |ψ⟩, whose coefficients have
both an amplitude and a phase. We employ two of the most well-studied generative models suited to this
purpose: the complex RBM and the complex RNN. The complex RBM takes on the form described in [16]: a
regular RBM, but with complex-valued parameters. In the standard basis, the complex RBM state has the
coefficients

⟨σ|φRBM(λ)⟩=
1√
Z(λ)

∑
h

eh
TWσ+b·σ+c·h =

1√
Z(λ)

eb·σ
Nh∏
j=1

[
1+ e(Wσ+c)j

]
, (1a)

where

Z(λ) =
∑
σ

∣∣∣∣∣∑
h

eh
TWσ+b·σ+c·h

∣∣∣∣∣
2

(1b)

is the squared normalization, λ represents the parameters (W, b, c), and h is the length-Nh hidden state
vector.

The complex RNN is the same as in [12], but we omit the softsign function for the phases. It has the
standard-basis coefficients

⟨σ|φRNN(λ)⟩=
N∏
j=1

e2πiθj(σ)
√

pj(σ), (2a)

where

θj(σ) = (u ·hj(σ)+ a)σj + v ·hj(σ)+ b (2b)
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is the local phase,

pj(σ) =
e(w·hj(σ)+c)σj

1+ ew·hj(σ)+c
(2c)

is the conditional probability,

hj(σ) = tanh(Mhj−1(σ)+ pσj−1 + q) (2d)

is the length-Nh hidden state (with tanh as the element-wise nonlinearity), λ represents the parameters (M,
p, q, u, v, w, a, b, c), and N is the length of the basis state vector σ. We do not employ a one-hot encoding,
and we initialize the hidden state recurrence with h0 = (0, . . . ,0) and σ0 = 0.

In the typical case of reconstructing a single probability distribution, RBMs and RNNs are trained by
minimizing the cross entropy term of the Kullback–Leibler divergence. However, for a state |ψ⟩ with both an
amplitude and a phase, projective measurements must be performed in multiple orthonormal bases to
capture sufficient information. This results in multiple probability distributions, and a natural approach is to
combine all the cross entropies into a single loss function [14]:

L(λ) =− 1

|D|

K∑
k=1

∑
σ∈Dk

log
∣∣∣⟨σ|R̂†

k |φ(λ)⟩
∣∣∣2, (3)

where R̂k is a unitary operator that maps the standard basis to measurement basis k,Dk is the collection of
standard-basis measurement outcomes obtained from the rotated target state R̂†

k |ψ⟩, K is the number of

bases (or ‘settings’) used for projective measurements, and |D|=
∑K

k=1 |Dk|. Further model and training
details are provided in appendix A.

In addition, for the small system sizes considered in this work (N = 4, 6, and 8 qubits), it is feasible to
represent the full state as a length-2N vector with complex coefficients ⟨σ|φWF(λ)⟩; the parameters λ of this
‘model’ are simply the coefficients themselves. To determine the coefficients, we begin with the observation
that whenever the gradient of the loss function L(λ) is zero (such as at a minimum), the corresponding state
|φ(λ)⟩ satisfies

|φ(λ)⟩= 1

|D|

K∑
k=1

∑
σ∈Dk

R̂k|σ⟩
⟨φ(λ)|R̂k|σ⟩

= T(|φ(λ)⟩). (4)

The nonlinear operator T—which resembles the composite physical imposition operator of [18]—has all
such states as fixed points. We exploit this feature to find a complex state vector |φWF(λ)⟩ by starting from
the exact state |ψ⟩ and applying T iteratively until a fixed point is reached:

|φWF(λ)⟩= T̃(T̃(· · · T̃(T̃(|ψ⟩)) · · ·)), (5a)

where

T̃(|φ⟩) = |φ⟩+T(|φ⟩)
∥|φ⟩+T(|φ⟩)∥

(5b)

includes a contribution from the previous state to smooth out oscillations near convergence. Although we
have no proven guarantees that this scheme will produce desirable states, we find empirically that nearly all
optimized wavefunctions are found in minima of the loss function.

Unlike the complex RBM and RNN, which have limited expressivity, these wavefunctions can represent
all states in the Hilbert space. The optimized wavefunctions are determined solely by the loss function and
the initial state, without any inductive bias due to the choice of model. Thus, the process of wavefunction
optimization through fixed point iteration yields a reference state with which to compare the other
data-driven reconstructions using the generative models.

3. Results and discussion

We are interested in reconstructing observables for groundstates of three molecular Hamiltonians Ĥ for LiH,
BeH2, and H2. In order to implement these in a form suitable for a quantum computer, each fermionic
Hamiltonian is decomposed into a qubit Hamiltonian as a sum of Pauli strings. This is obtained via the
parity transformation implemented in Qiskit [19]; see appendix B for more details.

3
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Figure 1. Distributions of ε (top panel) and δ (bottom panel) for wavefunction optimization of the groundstate of BeH2 using the
fixed point iteration in equation (5a). The colors indicate the number of calculations that had access to Smeasurement outcomes
and produced a state with the corresponding ε or δ. The lines are fits from figure 2.

Each of the qubit Hamiltonians is sufficiently small that its groundstate |ψ⟩ can be found using exact
diagonalization. This allows us to calculate the exact energies (or any generic observable), as well as to
produce a synthetic measurement dataset of arbitrary size. For each synthetic measurement outcome from a
given molecular groundstate, an orthonormal basis k is chosen uniformly at random from the K bases
determined by the Pauli string expansion of the corresponding Hamiltonian, and an outcome label σ is
selected with the Born rule probability

pk(σ) =
∣∣∣⟨σ|R̂†

k |ψ⟩
∣∣∣2 . (6)

The resulting datasets are used to train the RBM and RNN generative models. By way of comparison, we use
the same datasets to implement maximum likelihood tomography on all 2× 2N real-valued parameters of
the full wavefunction via fixed point iteration. We also compare to uniform classical shadows by
implementing algorithm 1 of [8].

For a given groundstate, the sample complexity S is defined as the number of measurements (i.e. the
number of copies of the state) required to achieve a target accuracy of the reconstructed state or observable.
This formulation implies that S is a function of the accuracy parameters ε and δ. However, in practice, one
must fix S and obtain a state with some energy and fidelity, which will be random variables that depend on
both the observed measurement outcomes and the details of the reconstruction method. Figure 1 reveals that
the distributions of

ε= ⟨φ(λ)|Ĥ|φ(λ)⟩− ⟨ψ|Ĥ|ψ⟩ (7a)
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Figure 2. The number of samples S required to reach an energy error ε (top panel) and infidelity δ (bottom panel) for LiH and
BeH2. The markers show the means of several calculations at a fixed S, and the horizontal error bars show the standard errors of
the mean. The lines are least squares fits through the markers; their slopes are given in table 1.

and

δ = 1− |⟨φ(λ)|ψ⟩|2 (7b)

for maximum likelihood tomography of the BeH2 groundstate vary smoothly with S. Therefore, we examine
averages over multiple independent datasets with fixed S in order to draw conclusions about the scaling of S.

Such averages are shown for all the methods in figures 2 and 3. For uniform classical shadows, the
estimated energy is used directly to compute the energy error:

ε=
∣∣∣Ē−⟨ψ|Ĥ|ψ⟩

∣∣∣. (8)

We chose to work in the regime of 106 to 107 measurements, as this is currently tractable on some
experimental hardware. For example, on the order of 107 measurement outcomes can be obtained per hour
using a superconducting quantum computer [20] (although for other hardware, e.g. neutral atom arrays, a
realistic number may be several orders of magnitude less [21]). With this many measurement outcomes, we
found that linear fits are appropriate for model-based reconstructions (R2 > 0.998), optimized
wavefunctions (R2 > 0.999), and uniform classical shadows (R2 > 0.999); their slopes are summarized in
table 1. Since the data is log-transformed for plotting, the slopes of the fits are the exponents of the power law
expressions relating the sample complexity S to the estimates of reconstruction quality (ε and δ).

Assuming that results in this region of S are in the asymptotic limit, we may compare the scaling between
the methods mentioned above. As listed in table 1, uniform classical shadows have a sample complexity of
approximately S∝ ε−2, as expected from the method’s structure as a direct average over random samples.
On the other hand, the model-based approaches get very near to scaling as S∝ ε−1. This implies that—in
the small error limit—significantly fewer measurements are needed to achieve the same quality of
approximation. In the present case of small N, the fidelity 1− δ between the model and target wavefunctions
can be computed directly; as shown in table 1, the model-based approaches are close to S∝ δ−1 using only
single-copy measurements.

5
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Figure 3. The number of samples S required to reach an energy error ε (top panel) and infidelity δ (bottom panel) for H2. The
markers show the means of several calculations at a fixed S, and the horizontal error bars show the standard errors of the mean.
The lines are least squares fits through the markers; their slopes are given in table 1. Data for the hollow triangles was generated
using a larger model; see the hyperparameters in appendix A.

Table 1. Slopes of the linear fits in figures 2 and 3 (for visual clarity, fits for the complex RBM and RNN are not drawn).

LiH BeH2 H2

ε δ ε δ ε δ

Shadows −2.01 — −2.00 — −1.99 —
Wavefunction −1.09 −1.13 −1.01 −1.01 −1.03 −1.02
Complex RBM −1.17 −1.18 −1.00 −1.01 −1.05 −1.05
Complex RNN −1.12 −1.16 −0.97 −1.00 −0.99 −1.01

One concern with models that are optimized to reproduce a finite collection of measurement outcomes is
the possibility of overfitting to the training data. Indeed, we consistently observe this with the optimized
wavefunctions, the vast majority (>99.998%) of which end up at a minimum of the loss function after
several rounds of fixed point iteration. Although it is not always possible to find a state in the Hilbert space
that perfectly reproduces the observations, being in a good loss minimum suggests some level of
memorization of the training data, an intuition that has been around since the inception of generative
models [22]. In contrast, the states produced by the trained complex RBMs and RNNs never completely
minimize the loss; states with a smaller loss always exist, but either the models cannot express them or the
training procedure cannot find them. To highlight the difference in the final states achieved by these two
approaches, we show in figure 4 an optimization trajectory that begins from the state of a trained complex
RNN, but is further optimized by repeated application of the nonlinear operator T̃ from equation (5b). The
state that is attained by the end of the fixed point iteration has a loss that is lower (better memorization) at
the cost of a larger energy error (worse generalization, as described in appendix C).

The effect of this trade-off can be observed in figure 3 for H2, where the models invariably generalize
better than the optimized wavefunctions. Using larger models (which are expected to be more expressive and
possibly more trainable) can also negatively impact the ability to generalize, as shown by the hollow triangles

6
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Figure 4.Wavefunction optimization trajectory for H2, starting from the state of a trained complex RNN. The loss L (solid, left
axis) decreases to Lmin (the loss at a nearby local minimum) as the optimization proceeds, but the energy error ε (dashed, right
axis) increases more than twofold.

in figure 3. It is likely that a description of the actual ground state of H2 is much simpler (in the sense of
Kolmogorov complexity) than a description of any particular realization of measurement data, so a more
constrained model might stumble upon the former while searching for the latter. Thus, the limited flexibility
of the models can be a boon for groundstate energy estimation in practice. Additionally, if one is willing to
consider a variational Monte Carlo approach, overfitting can be avoided altogether by switching to an
energy-based loss after the initial portion of the training [23, 24].

4. Conclusions and outlook

In this paper, we explore the use of generative models adapted from modern machine learning for the
efficient reconstruction of observables from prototypical qubit Hamiltonians in quantum chemistry: LiH,
BeH2, and H2. The neural network ansatzes we use are well-capable of representing groundstate
wavefunctions, can be made systematically more expressive (by increasing e.g. the number of hidden units),
and have well-studied and efficient training heuristics. Using synthetic datasets of typical noiseless
experimental measurements on the groundstate wavefunction, we calculate the sample complexity S:
the number of independent measurements required to reproduce the energy or fidelity up to a given
accuracy.

We find that the energy reconstruction obtained by training a generative model results in an energy error
ε that is orders of magnitude smaller than that achieved by classical shadow tomography using the same
amount of measurement data. More generally, these findings suggest that S for the model-based
reconstruction should scale asymptotically as ε−1, as opposed to ε−2 for classical shadows.

Of course, in practice, this type of improvement would depend on the model training heuristics scaling
favorably. While very few results relevant to this scaling exist in the machine learning literature, efficient
scaling of the training procedure has been observed previously in reconstructions of many-qubit
groundstates relevant for condensed matter physics [13]. It remains to be seen whether the asymptotic
advantage for the sample complexity in the model-based case persists for larger molecules.

Our results illustrate that some applications of present-day quantum computers can benefit from the use
of generative models adapted from machine learning. For the small molecules studied here, we can conclude
that a model-based approach is better able to make use of hardware with a data rate limited by state
preparation and measurement than alternatives such as classical shadow tomography. More generally, hybrid
quantum–classical algorithms such as VQE can benefit from modeling quantum states using neural
networks. These approaches require multiple states to be prepared on a quantum computer, with very many
measurements performed over the course of the algorithm [25, 26]. Insertion of neural network models into
the hybrid workflow has the potential to drastically reduce the amount of quantum computation involved,
enabling the study of systems which would otherwise be prohibitively expensive.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
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Appendix A. Models and training

The complex RBMs and RNNs were trained using the Adam optimizer [27] in the Flux machine learning
library for Julia [28, 29], with the hyperparameters given in table 2. The hyperparameters were chosen to
provide a reasonable level of convergence of the energy simultaneously for small and large S. Since the S
measurements are allocated to the K bases uniformly at random, approximately S/Kmeasurements are
performed in each basis.

To simplify the training procedure and reduce the number of hyperparameters, no minibatching was
performed during training. For both optimization methods (Adam and fixed point iteration), all S
measurement outcomes were used for each update of the model parameters. For larger models, it may be
necessary to split the training data into random minibatches, which will have the effect of stochastically
perturbing the loss landscape at each optimization step. This ‘blurring’ of the loss minima should act as an
implicit regularizer and improve the generalization of the trained models [30–32].
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Table 2.Model and training hyperparameters. The number of real-valued parameters is NP = 2(NNh +N+Nh) for complex RBMs
and NP = N2

h + 5Nh + 3 for complex RNNs. Hyperparameters for the large H2 RNN (Nh = 64, hollow triangles in figure 3) are also
included.

Molecule Model Nh NP Learning rate Epochs

LiH RBM 3 38 3× 10−3 1.6× 105

LiH RNN 4 39 1× 10−3 1.0× 105

BeH2 RBM 9 138 3× 10−4 1.0× 105

BeH2 RNN 15 303 1× 10−4 4.5× 105

H2 RBM 5 106 3× 10−3 1.2× 105

H2 RNN 9 129 3× 10−4 1.2× 105

H2 RNN 64 4419 1× 10−5 1.2× 105

Table 3. Details of the molecular Hamiltonians. The transformation parameters were chosen to produce the same system sizes N as in
[14].

LiH BeH2 H2

Bond length 1.55 Å 1.32 Å 0.75 Å
Basis set STO-3G STO-3G 6-31G
Spin orbitals 12 14 8
freeze_core True True False
orbital_reduction [-3, -2] [-3] None
two_qubit_reduction True True False
z2symmetry_reduction None [+1, +1] None
Qubits (N) 4 6 8
Pauli terms 100 216 185
Measurement bases (K) 25 83 54

Appendix B. Molecular Hamiltonians

We studied three molecules near their equilibrium bond lengths: LiH, BeH2, and H2. In the case of BeH2, we
only considered linear geometries with equal bond lengths. The electronic Hamiltonians were transformed
into qubit form using Qiskit’s FermionicTransformation class with Psi4 [33] as the driver and the
mapping set to FermionicQubitMappingType.PARITY. Energies are reported in hartrees (Ha).
Per-molecule information is provided in table 3.

Appendix C. Energy error as a proxy for generalization

One might intuitively expect that a smaller additive energy error ε indicates that the generative model is
better able to generalize to unseen configurations. For example, if the model’s energy is computed by Monte
Carlo, evaluating the estimator on samples that are more representative of the true distribution should
provide a result that is closer to the true energy.

The complex RBM and RNN are trained to reproduce a particular finite collection of data using the
empirical risk (the cross entropy relative to the histogram of the data). Hence, a suitable measure of
generalization error is the true risk (the cross entropy relative to the target distribution) [34],

G(λ) =− 1

K

K∑
k=1

∑
σ

pk(σ) log
∣∣∣⟨σ|R̂†

k |φ(λ)⟩
∣∣∣2, (C1)

which is obtained in the limit of infinite data. As can be seen in figure 5, for the wavefunctions obtained in
this work, there is a strong correlation between the generalization error G and the energy error ε, suggesting
that the latter is representative of the former.

9
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Figure 5. Correlation between the generalization error G and energy error ε for all 3 molecules. The average entropy H of the
target distributions is subtracted from each G in order to make the values commensurable between molecules.
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