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Quantum chemistry and materials is one of the most promising applications of quantum comput-
ing. Yet much work is still to be done in matching industry-relevant problems in these areas with
quantum algorithms that can solve them. Most previous efforts have carried out resource estimations
for quantum algorithms run on large-scale fault-tolerant architectures, which include the quantum
phase estimation algorithm. In contrast, few have assessed the performance of near-term quantum al-
gorithms, which include the variational quantum eigensolver (VQE) algorithm. Recently, a large-scale
benchmark study [1] found evidence that the performance of the variational quantum eigensolver for
a set of industry-relevant molecules may be too inefficient to be of practical use. This motivates the
need for developing and assessing methods that improve the efficiency of VQE. In this work, we pre-
dict the runtime of the energy estimation subroutine of VQE when using robust amplitude estimation
(RAE) to estimate Pauli expectation values. Under conservative assumptions, our resource estima-
tion predicts that RAE can reduce the runtime over the standard estimation method in VQE by one
to two orders of magnitude. Despite this improvement, we find that the runtimes are still too large
to be practical. These findings motivate two complementary efforts towards quantum advantage: 1)
the investigation of more efficient near-term methods for ground state energy estimation and 2) the
development of problem instances that are of industrial value and classically challenging, but better
suited to quantum computation.

I. INTRODUCTION

Identifying a promising candidate for practical quan-
tum advantage lies at the frontier of modern quantum
computing research [1–7]. Rapid improvement in quan-
tum hardware [8–12] has given us hope that in the near
future we will enter a new technological era marked
by the widespread application of quantum algorithms
to simulating chemistry and materials, solving differ-
ential equations, and modeling financial markets. Is it
possible to predict the onset of quantum advantage for
a particular industrially relevant problem? What are
the quantum resources needed to achieve this using im-
perfect near-term devices? Our work is motivated by
these questions in the context of chemistry simulation,
focusing on the prototypical task of ground state energy
estimation using the variational quantum eigensolver
(VQE) algorithm [13]. The molecular ground state en-
ergy is useful for the important molecular modelling
task of predicting the enthalpies of hydrocarbon com-
bustion reactions. The starting point of this work is a re-
lated study of Gonthier et al. [1], which raised the ques-
tion: how do recent advances in quantum estimation [14]
improve the pessimistic findings of VQE performance? Our
work aims to answer this question. We approach this
problem from a resource estimation perspective, using
the same set of molecules as in [1] to facilitate compari-
son.

Ground state energy estimation is a fundamental
problem in molecular quantum chemistry holding the

key to multiple industrial applications, such as material
design and accelerated drug discovery. It was among
the first applications of both fault-tolerant [15] and near-
term variational quantum algorithms [13]. Several au-
thors identified it as a promising candidate for indus-
trially relevant quantum advantage, even though a spe-
cific problem for which it can be established remains a
subject of debate [16–19].

An important step along the path to quantum ad-
vantage for quantum chemistry and materials is the
development of viable problem instances: identify
industrially-relevant quantum systems for which solv-
ing the ground state energy problem with sufficient
accuracy is classically intractable. Typical examples
include so-called multireference systems, where the
ground state cannot be even qualitatively described by
the Hartree-Fock mean-field approximation. Motivated
by this, previous work in resource estimation explored
strongly correlated systems such as metalloenzyme co-
factors [2, 7, 17], transition metal compounds [18], and
the 2-D Fermi-Hubbard model [19]. In the present work,
we instead look at systems that are well-described by
single-reference methods. However, reaching sufficient
accuracy can still be quite costly [1], and these systems
have the advantage of readily available, accurate ex-
perimental data to gauge the accuracy of classical algo-
rithms. These properties make these molecules a good
benchmark set.

Most of these previous resource estimates in quantum
chemistry have been devoted to assessing algorithms

ar
X

iv
:2

20
3.

07
27

5v
1 

 [
qu

an
t-

ph
] 

 1
4 

M
ar

 2
02

2



2

for large-scale fault-tolerant quantum computers. This
leaves open the question: how might near-term quan-
tum computers be used to realize quantum advantage
in quantum chemistry?

In the past decade, a host of quantum algorithms
have been developed that are suited to the limitations
of noisy intermediate-scale quantum (NISQ) devices.
The archetype of these methods is the variational quan-
tum eigensolver (VQE) algorithm [13]. VQE is a heuris-
tic algorithm that leverages the variational principle of
quantum mechanics to find the best approximation for
a ground state of a given molecular Hamiltonian H for a
particular choice of a circuit ansatz A [13, 20, 21]. The
progress of these near-term quantum algorithms sug-
gests an alternative route to discovering quantum ad-
vantage: begin with the capabilities of current quantum
devices and determine what minimal improvements are
needed for them to solve useful problems. However,
carrying out resource estimations for near-term quan-
tum algorithms like VQE is challenging because they
are heuristic: unlike traditional quantum algorithms for
the ground state energy estimation, such as QPE, VQE
does not provide theoretical performance guarantees
and needs to be benchmarked on a per case basis, tak-
ing into account the target precision and typical problem
size.

Recent work [1] carried out a large-scale benchmark
study on the resources needed to run VQE. The authors
considered a set of molecular Hamiltonians represent-
ing industrially-relevant hydrocarbon molecules. They
found that the runtime required to reach chemical accu-
racy (i.e. 1 kcal/mol) for the reaction energies is pro-
hibitive under realistic assumptions for quantum gate
times. This large runtime was mostly due to the time
needed for the subroutine of energy expectation value
estimation with standard sampling; the statistical nature
of the energy estimation entails an inverse quadratic
scaling of the number of measurements with respect to
the target precision.

This statistical phenomenon is responsible for the so-
called “measurement problem” of VQE with standard
sampling: the number of statistical samples required
to obtain sufficiently accurate energy estimates is large,
leading to prohibitively large runtimes for the VQE al-
gorithm. From the pessimistic findings regarding the
measurement problem in [1], the authors concluded
that techniques for speeding up the estimation subrou-
tine used in VQE would be necessary in order to make
the algorithm competitive with state-of-the-art classical
methods on industry-relevant problem instances. They
suggest that techniques like Robust Amplitude Estimation
(RAE) [14, 22], which increase the rate of information
gain in estimation, will be needed to realize quantum
advantage for the problem of ground state energy esti-
mation.

RAE offers a new feature among near-term quantum
algorithms for estimation: improvements in the quan-
tum computer (as measured by reduction in gate error

rates) translate into a proportional improvement in esti-
mation performance (as measured by reduction in run-
time). Key to this feature is the robustness of the algo-
rithm: it accommodates a degree of error in the opera-
tions by learning a model of the error’s effect.

Recent work has investigated the use of similar tech-
niques for the application of Monte Carlo integration in
finance [4, 23]. To our knowledge, ours is the first ef-
fort to assess these methods for the application of quan-
tum chemistry. The objective of this work is to carry out
a resource estimation for robust amplitude estimation
applied to VQE energy estimation for the problem in-
stances defined in [1]. Our resource estimates predict
that, for the molecules considered, RAE gives between a
13 and 64 fold reduction in runtime over VQE.

The paper is structured as follows. In Section II we
review the expectation value estimation techniques of
standard sampling (as traditionally used in VQE) and
robust amplitude estimation. In Section III we de-
scribe the methods used to carry out the resource es-
timations including algorithm performance modeling,
circuit compilation, and the accounting of error correc-
tion overhead. In Section IV we describe the results of
validating the RAE algorithm performance model and
the results comparing the performance of standard sam-
pling to robust amplitude estimation for the benchmark
set of molecules. Finally, we conclude in Section V with
an outlook on future directions for discovering quantum
advantage in quantum chemistry.

II. TECHNICAL BACKGROUND

A. Standard sampling

Before introducing the robust amplitude estimation
algorithm we briefly review the standard sampling es-
timation method. In the simplest setting, standard sam-
pling is used in VQE to estimate expectation values of
Pauli strings. For a Hamiltonian decomposed into a
linear combination of Pauli strings H = ∑j µjPj and
“ansatz state” |A〉, the energy expectation value is esti-
mated as a linear combination of Pauli expectation value
estimates

Ê = ∑
j

µjΠ̂j, (1)

Var(Ê) ≤ ε2
chem. acc. (2)

where Π̂j is the estimate of 〈A|Pj|A〉. For a given Pauli
operator P, the standard sampling estimation procedure
is as follows: prepare |A〉 and measure operator P re-
ceiving outcome d = 0, 1; repeat M times, receiving k
outcomes labeled 0 and M− k outcomes labeled 1; esti-
mate Π = 〈A|P|A〉 as Π̂ = k−(M−k)

M . In the case that one
has some prior information about the value of Π, we can
use a Bayesian inference variant of the above estimation
process. In this case, expectation values are modeled
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as binomial distributions with beta priors, such that the
measurement process can be assimilated as updating the
distribution based on new measurements according to
Bayes rule. This approach is referred to as Bayesian VQE
(BVQE), and is described in [24].

As determined in [1], reaching a high-accuracy energy
estimate with standard sampling requires too many
independent measurements for VQE to compete with
state-of-the-art classical quantum chemistry methods.
This is due to the large constant of proportionality K re-
lating the estimation runtime T to the target accuracy ε,

T = MC =
CK
ε2 , (3)

where M is the number of measurements and C is the
time cost of state preparation and measurement. This
large proportionality constant of CK is the source of the
measurement problem. As described in [1], state-of-the-
art methods reduce the value of K but still fall several
orders of magnitude short. We refer to this issue as the
measurement problem. This finding illuminates an obsta-
cle for using VQE as a practical problem solving method
and motivates the need for methods which reduce the
runtime of estimation more dramatically.

B. Robust amplitude estimation

The robust amplitude estimation algorithm serves to
speed up the estimation of expectation values. A de-
tailed description of this method can be found in the
following reference [14]. We introduce the RAE algo-
rithm as a solution to the measurement problem dis-
cussed in the previous section. In contrast to the estima-
tion method typically used in VQE, RAE enables a re-
duction of estimation runtime proportional to improve-
ments in the quality of the quantum hardware. Accord-
ingly, we expect that for quantum devices of sufficient
quality, we can use the RAE algorithm to carry out en-
ergy estimation in a reasonable amount of time.

The robust amplitude estimation algorithm is used to
speed up the estimation of each expectation value

Π = cos θ = 〈A| P |A〉 , (4)

where |A〉 = A |0n〉 in which A is the ansatz circuit, P
is an n-qubit Hermitian operator with eigenvalues ±1,
and θ = arccos Π is introduced to facilitate Bayesian
inference. The only substantially new circuit operation
that is required for this method is a reflection about the
initial state R0 = I− 2 |0〉〈0|⊗N .

RAE uses the quantum circuit shown in Figure 1 to
generate measurement outcomes as follows: prepare the
ansatz state |A〉 = A |0n〉, apply L RAE circuit layers
U = AR0 A†P, and then measure the Pauli observable P.
In the noiseless setting, the likelihood of the outcomes
d = 0, 1 depends on the parameter of interest Π = cos θ

FIG. 1. This figure depicts the operations used for generating
measurement outcomes in the robust amplitude estimation al-
gorithm. A is the state preparation circuit, P is the observable
of interest (the final circuit operation indicating it’s measure-
ment), and U is the Grover iterate comprised of AR0 A†P, with
R0 the reflection about the state |0〉⊗N .

as

P(d|θ; L) =
1
2

(
1 + (−1)d cos((2L + 1)θ)

)
. (5)

RAE uses the outcomes from a sequence of such mea-
surements to infer the true value of θ, and hence Π =
〈A|P|A〉. This inference can be implemented in a vari-
ety of ways including filtering techniques [25], numer-
ical maximum likelihood estimation [26], and adaptive
grid refinement [27]. At the core of each of these meth-
ods is the Bayes update rule, whereby a prior distribu-
tion p(θ) capturing initial beliefs about the parameter of
interest is updated to a posterior distribution p(θ|d) by
multiplying by the likelihood function and dividing by
the model evidence,

p(θ|d) = P(d|θ)p(θ)∫
dθP(d|θ)p(θ)

. (6)

In essence, RAE reduces the estimation runtime by
drawing measurement outcomes whose likelihoods de-
pend sensitively on the parameter of interest.

In practice, quantum computation is subject to errors.
These errors derive from several sources, including de-
coherence to the thermal environment and limitations
on the calibration of quantum gates. Such errors effect
the relationship between the parameter of interest Π and
the likelihoods of observed data; the actual likelihood
function differs from the idealized likelihood function.
To accommodate this, the robust amplitude estimation
algorithm incorporates a model for the impact of noise
on the inference process. We employ the noise model
of [14] to account for the effect of error in RAE. The
purpose of the noise model is to predict how errors in
the circuit implementation influence the likelihood func-
tion from which measurement outcomes are drawn. By
composing L noisy RAE circuit layers and measuring
the Pauli observable, we model the resulting likelihood
function using the exponential decay model,

P(d|θ, λ, p; L) =
1
2

(
1 + (−1)d p exp (−λL) cos((2L + 1)θ)

)
,

(7)
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where p denotes the initial ansatz state preparation and
measurement error and λ denotes the exponential de-
cay parameter. These two parameters can either be
fixed (possibly learned from prior experiments) or can
be treated as nuisance parameters to be learned during
the inference process [28].

In [14], the authors propose a model for the run-
time (converted here to be measured in total number of
queried RAE circuit layers) for robust amplitude estima-
tion to reach a target mean squared error ε2, given the
noise parameters p and λ:

tε ≈
e2

e− 1
e−λ

2p2

 λ

ε2 +
1√
2ε

+

√√√√( λ

ε2

)2
+

(
2
√

2
ε

)2
 ,

(8)

The model shows an interpolation between the tra-
ditional scalings known as the shot-noise-limit scaling
O(1/ε2) and the Heisenberg-limit scaling O(1/ε). As
described in the following section, one of the contri-
butions of this work is the analysis of simulation data
which validates this model with respect to a weaker set
of assumptions than those used to derive the model. As
explained in the following section, this weaker set of
assumptions still assumes that the influence of error is
perfectly modeled by the exponential decay model like-
lihood function, leading to over-optimistic conclusions
of algorithm performance. Importantly, this suffices for
our purposes because we aim to understand the mini-
mal resources necessary, but not sufficient, for achieving
quantum advantage.

III. METHODS

The main objective of this work is to predict the re-
sources that are necessary, but not necessarily sufficient,
for achieving quantum advantage for the problem of es-
timating molecular ground state energies. A critical bot-
tleneck in using quantum variational methods to deter-
mine the ground state energy is the large number of sta-
tistical samples needed for accurate estimates[1]. Thus,
a necessary condition for achieving quantum advantage
for the ground state energy estimation problem is to
carry out the estimation task in a reasonable amount
of time. The methods we detail in this section aim to
predict the total duration of time needed to ensure an
energy estimation to within chemical accuracy for the
molecules of interest.

A. Runtime prediction strategy

The task which we analyze is the estimation of the
energy expectation value 〈A|H |A〉 using RAE, where
|A〉 = A |0〉⊗N is the ansatz state. The analysis of this

task using VQE was described in [1]. Each molecular
Hamiltonian of interest is converted into a weighted
sum of Pauli terms as H = ∑j µjPj. The estima-
tion method first estimates the expectation value of
each Pauli term individually as Π̂j and then takes the
weighted sum of such estimates as the final energy ex-
pectation value estimate according to Equation (1). We
consider the case of having a target accuracy ε for the es-
timate of the final energy, and we wish to minimize the
total time required to achieve this target accuracy. Ex-
cluding the possibility of estimating Pauli expectation
values in parallel across different QPUs from our anal-
ysis, we must choose how to optimally allocate time to
each estimation so as to minimize the total time. In par-
ticular, we should spend proportionally more time, and
thus achieve a better accuracy ε j, on terms with larger
coefficients µj.

For a single-term estimate Π̂j, the total runtime de-
pends on the number of ansatz and phase flip reflection
operations used for each estimate and the time taken to
implement each of these operations. Since each RAE cir-
cuit consists of repeated layers of U = AR0 A†Pj, we
will first count the total number of such layers used
in the estimation process, and then determine the time
needed to implement each layer. That time depends on
the compilation of the component operations into ele-
mentary logical gates. Finally, the time needed to imple-
ment each logical gate depends on the quantum error
correction resources used and on the runtime of each
underlying physical gate. Qualitatively, a larger target
fidelity of the gate requires a larger time overhead for
its fault-tolerant implementation. Finally, the modality
used for the quantum computer can have a significant
impact on the time needed for each elementary gate; as
a rule of thumb, elementary gates implemented with
superconducting-qubit quantum computers tend to be
several orders of magnitude faster than those of ion trap
quantum computers. Putting all of this together, we ar-
rive at an estimate of the time required to reach a target
accuracy in the energy estimate.

We introduce some notation and outline this quanti-
tative strategy. The inputs to the runtime prediction are

• H: Hamiltonian

• ε: Target accuracy, where ε2 = E(Ê− 〈H〉)2

• N: Number of logical qubits

• rg: Elementary physical gate error rate

• rg: Elementary logical gate error rate

• Tg: Elementary physical gate time

These inputs determine a number of dependent quanti-
ties, which are used to carry out the final runtime pre-
diction. The steps of this process are enumerated as fol-
lows:
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1. Validate the runtime model of Equation (8) for
single-term estimation to target accuracy ε j: Tj =
τl · tj(ε j, λ, p), where τl is the duration of a RAE cir-
cuit layer and tj is the total count of the number of
RAE layers queried (see Section II B for ε j, λ, and
p).

2. Establish a method for allocating runtime among
terms, amounting to determining optimal target
accuracies for each term ε∗j .

3. Determine circuit depths of the ansatz and phase
flip operations DA and DR, respectively. Then de-
termine the required logical gate error rate rg from
e−λ = (1− rg)(2DA+DR)N/2. The layer runtime is
determined from τl = (2DA + DR)T̃g.

4. Determine fault-tolerant overhead F(rg, rg)
needed to achieve logical gate error rate rg with
physical gate error rate of rg, giving logical gate
time T̃g = F(rg, rg)Tg.

With these in place the final expression for the runtime
to target accuracy is

T = τl(DA, DR, T̃g)∑
j

tj(ε
∗
j , λ, p). (9)

We note that the time needed for carrying out the esti-
mates in parallel is simply the maximum of the times
among the individual terms,

T‖ = τl(DA, DR, T̃g)max
j

tj(ε
∗
j , λ, p). (10)

The methods used for the step of validating the runtime
model are reported in Appendix A, and the correspond-
ing results in Appendix A 2. Appendix B describes the
compilation model and the assessment of circuit charac-
teristics; Appendix C describes the method for allocat-
ing shots across the Pauli expectation values; and Ap-
pendix D describes the fault-tolerance cost model used
in the final results of Section IV. In the remainder of this
section we detail the methods used to make the runtime
predictions for standard sampling and RAE.

B. Resource estimation methods

In this subsection we describe the methods for gen-
erating energy estimation runtime predictions for stan-
dard sampling and RAE.

The problem instances defined in [1] comprise a set
of small hydrocarbons for which combustion energies
should be calculated to an accuracy comparable to that
achievable in experiments. For this purpose, between
104 and 260 qubits are necessary due to the large basis
sets involved. Since obtaining and manipulating Hamil-
tonians for problems of this size is cumbersome with
the currently available software, we instead generated

two series of Hamiltonians for up to 80 qubits for each
molecule, and used the results to extrapolate to the large
qubit numbers. The two series of Hamiltonians are gen-
erated with two different orbital types, i.e. two different
discretizations for the problem, like in [1]. As detailed in
[1], we built Hamiltonians so that the number of qubits
used is an integer multiple of the number of active elec-
trons, to facilitate extrapolation. For example, for H2O
with 8 active electrons, we built Hamiltonians with 16,
24, 32, 40, 48, 56, 64, 72 and 80 qubits. The Hamilto-
nian with only 8 qubits is omitted since it would trivially
yield the mean-field Hartree-Fock energy.

To obtain the predicted runtime for RAE, we use the
following steps:

1. Estimate the total number of Ansatz queries re-
quired by RAE to reach chemical accuracy for each
Hamiltonian, based on the runtime model vali-
dated in Appendix A and on the allocation de-
tailed in Appendix C. This was done for final RM-
SEs of 10−3 and 10−4 Ha and for circuit layer fi-
delities e−λ comprised between (1 − 10−3) and
(1− 10−6) on an approximately logarithmic scale.

2. For a fixed molecule, orbital type, RMSE and layer
fidelity, the number of Ansatz queries was fitted
using SciPy as a function of the number of qubits
with aNb + c where a, b, and c are fitting coeffi-
cients. In the few cases where only two data points
were available, the coefficient c was fixed to zero.

3. Plug in the appropriate number of qubits (between
104 and 260) in the function resulting from the fit
to estimate the number of Ansatz queries neces-
sary to reach chemical accuracy.

4. Convert the number of Ansatz queries to runtimes
in seconds using Equation (9).

The runtime predictions for standard sampling follow
those of [1] with a few modifications. Compared to [1],
we consider the runtime of standard sampling energy
estimation for varied gate error rates. Accordingly, we
introduce two competing factors in the runtime predic-
tions. The gate error rates are decreased using quan-
tum error correction; as mentioned above, improving
gate error incurs a time overhead that we factor into the
runtime predictions. This reduction in gate error rate is
helpful, though, in that it reduces the degree to which
any error mitigation technique will adjust the expecta-
tion value estimates. We will assume an idealistic error
mitigation technique that simply rescales the expecta-
tion value estimates so as to invert the attenuation fac-
tor in the observed expectation value 〈Pi〉obs = f 〈Pi〉ideal ,
where f is the circuit fidelity. An example of such an es-
timator is probabilistic error cancellation [29]. In rescal-
ing the observed expectation value by 1/ f , the variance
in the estimate is scaled by 1/ f 2 (c.f. Eq. 15 in [29]). Ac-
cordingly, we model the error mitigation overhead as a
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factor in the standard sampling energy estimation run-
time

1
f 2 =

1
(1− rG)DA N , (11)

where we take the circuit fidelity to be the product of
the logical gate fidelities 1− rG of all DAN/2 gates in the
ansatz circuit. Note that we have made the optimistic as-
sumption that the readout error is negligible compared
to that of the gate error. Hence, to obtain the predicted
standard estimation runtimes at large qubit numbers,
we follow these steps:

1. Compute K for each Hamiltonian according to the
method presented in [1], except that no grouping
of Pauli terms or variance reduction technique is
applied to the Hamiltonians.

2. For a fixed molecule and orbital type, fit K to
aNb + c where a, b, c are fitting coefficients and
N the number of qubits. c is set to zero if only two
data points are present.

3. Evaluate M = K/ε2 with K obtained from the for-
mula fitted above applied to large qubit numbers,
for ε of 10−3 and 10−4 Ha.

4. Compute the error mitigation overhead. The log-
ical gate error rate is chosen to be consistent with
the RAE circuit fidelities chosen above. Factor the
error mitigation overhead with the execution time
obtained from DA and the logical gate execution
time T̃g that includes the appropriate error correc-
tion overhead.

In Section IV we present plots and summarize the
findings of these extrapolations.

IV. RESULTS

We now describe the results of the runtime prediction
described in Section III B. These results are depicted in
detail for two specific molecules in Figure 2 and sum-
marized for the full set of molecules in Table I.

Figure 2 shows the predicted runtimes for the two es-
timation methods (standard sampling of VQE and ro-
bust amplitude estimation) as a function of logical gate
error rate. We have chosen the molecules CH4 and CO2
to represent the smallest (13×) and largest (64×), re-
spectively, relative improvements of RAE over standard
sampling. The figure shows the result of how reducing
the logical gate error rates affords the RAE algorithm to
run deeper quantum circuits, increasing the degree of
quantum amplification and subsequently reducing the
runtime of the estimation task. The shape of the runtime
vs error rate curve reveals an important phenomenon:
for a target estimation accuracy, the runtime has a min-
imum at an optimal logical gate error rate. We observe

the presence of a minimum for both RAE and standard
sampling. In the case of RAE, this phenomenon is due to
the balance of increased quantum amplification with the
cost of error correction overhead. In the case of VQE, the
phenomenon is due to the balance of reduced cost of er-
ror mitigation overhead with the cost of error correction
overhead.

This figure also compares the predicted runtimes of
estimation when using compilation to different device
connectivities: all-to-all (A2A) and two-dimensional
(2D). We observe that the best predicted runtimes are
achieved by RAE when all-to-all compiling is used.
When the operations are compiled according to a 2D
connectivity, the predicted runtime of RAE is larger than
that of VQE with any connectivity; this is due to the
phase flip operation requiring many gates when com-
piled according to a 2D connectivity (see Table II).

Table I shows physical and logical qubit resources,
gate error rates, and runtime data for each of the eleven
molecules studied. We compare these resources and
runtimes for standard sampling and RAE. In each case,
the data is presented for the optimal logical error rate
(minimal runtime) unless otherwise specified. In the
case of standard sampling, the number of physical
qubits (accounting for error correction overhead) ranges
from tens of thousands to roughly a hundred thousand
qubits. RAE can take advantage of further reducing the
logical error rate. This comes at the cost of an additional
qubit overhead that is three to four times that of stan-
dard sampling. This additional overhead results in more
efficient error correction, bringing the logical error gate
for optimal RAE operation five to six orders of magni-
tude below that of standard sampling. This reduction
in logical gate error rate enables a factor of 13 to 64 re-
duction in the RAE runtime compared to standard sam-
pling.

Despite the predicted runtime improvements of RAE,
we observe that these times are still too high to be prac-
tical; the lowest predicted runtime is more than one mil-
lenium. However, like standard sampling, this estima-
tion method is highly parallelizable; running on multi-
ple quantum processing units gives a proportional re-
duction in runtime. Furthermore, we highlight once
again that these runtime estimates do not include any
grouping or variance reduction methods. In the case
of standard sampling, such methods can reduce the es-
timated runtime by three to five orders of magnitude.
However, RAE operates quite differently from standard
sampling, and thus it remains to be seen if a similar im-
provement can be obtained and how methods used in
standard sampling can be adapted.



7

FIG. 2. These figures compare the predicted runtimes of standard sampling (magenta), as typically used in VQE, and robust
amplitude estimation (green) for estimating the energies of the CH4 and CO2 molecules to within accuracy of 0.001 Hartrees as
the logical gate error rate is improved through error correction. The star and dot symbols indicate the use of compilation from
all-to-all (A2A) connectivity and two-dimensional (2D) connectivity, respectively. The horizontal dotted lines mark the minimal
predicted runtimes for each method and connectivity. We have chosen the CH4 and CO2 molecules because they yield the smallest
and largest speedups of RAE over standard sampling, respectively. For both molecules, using RAE with A2A connectivity yields
the lowest predicted runtime. However, the predicted runtimes are still too high to be practical.

Molecule C2H2 C2H4 C2H6 C2H6O C3H4 C3H6 C3H8 CH4 CH4O CO2 H2O
Number of logical qubits 130 156 182 260 208 234 260 104 182 208 104
Number of VQE physical qubits 43,900 61,200 71,300 117,000 81,500 105,000 117,000 35,200 71,300 81,500 35,200
Number of RAE physical qubits 162,000 195,000 228,000 325,000 260,000 292,000 352,000 120,000 228,000 281,000 130,000
Optimal VQE gate error rate 1e-5 4e-6 4e-6 2e-6 4e-6 2e-6 2e-6 1e-5 4e-6 4e-6 1e-5
Crossover RAE gate error rate 4e-8 3e-8 2e-8 9e-9 1e-8 1e-8 9e-9 6e-8 2e-8 1e-8 6e-8
Optimal RAE gate error rate 4e-11 3e-11 6e-11 3e-11 4e-11 4e-11 9e-12 2e-10 6e-11 1e-11 6e-11
Estimation runtime VQE (109s) 1,700 3,900 22,100 477,000 98,200 125,000 189,000 910 32,700 83,900 1,400
Estimation runtime RAE (109s) 70 130 1,100 20,000 5,100 6,200 7,000 72 1,800 1,300 41
Runtime ratio (VQE/RAE) 25 30 20 25 19 20 27 13 18 64 34

TABLE I. This table shows the predictions of resources needed to estimate the energy of the prepared ground state using standard
sampling (denoted as VQE) or RAE to below chemical accuracy (1.0mHa<1.3mHa) for each molecule (represented using canonical
orbitals). For both standard sampling and RAE (for each molecule), we choose the logical gate error rate so that the runtime
is minimized, and we report it as the optimal error rate. In addition, for RAE we indicate the crossover error rate, at which
RAE yields lower runtimes than standard sampling. The phase flip operation used in RAE is compiled assuming an all-to-all
connectivity and we assume surface code cycle times of 1µs.

V. DISCUSSION AND OUTLOOK

This work contributes to identifying the most promis-
ing near-term methods for achieving quantum advan-
tage in molecular simulation. In previous work [1],
we identified the “measurement problem” as a bottle-
neck in the variational quantum eigensolver (VQE) al-
gorithm, making the subroutine of energy estimation
prohibitively slow even for small molecules of indus-
trial relevance. Here, we have investigated the extent to
which quantum amplification helps to reduce the run-
time needed to estimate the energy expectation value
in VQE. Specifically, we carried out runtime predictions
for the energy estimation subroutine when using ro-
bust amplitude estimation (RAE) [14]. We used a per-

formance model for RAE (see Appendix A 2) to carry
out runtime predictions for a range of system sizes and
molecules. We then extrapolated these results to the
larger system sizes of interest.

Using a coarse approach to fault-tolerant compilation
and making optimistic assumptions about the opera-
tion speeds of the fault-tolerant architecture, we arrive
at runtime estimations in terms of number of seconds.
We find that using RAE gives a 13 to 64 factor speedup
over standard sampling, with RAE requiring just a few
times as many physical qubits as VQE from the error
correction overhead. Although the predicted runtimes
for both methods are still too high to be of practical
value, we note that they were obtained without any
grouping of the Hamiltonian terms or variance reduc-
tion techniques. In the case of standard sampling, such
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methods can reduce the predicted runtime by up to 5
orders of magnitude. Some grouping methods are com-
patible with RAE, but it remains to be seen whether the
associated cost will yield practical methods. We leave
this investigation to future work.

Beyond Hamiltonian grouping techniques, we dis-
cuss several other ways in which predictions with more
reasonable runtimes might be obtained:

1. Circuit depth reduction: Any reduction in circuit
depth saves on time and error; both of which
reduce the runtime of RAE. It is possible to re-
duce circuit depth through improved compilation
schemes (e.g. in the phase flip [30]) or improved
ansatz circuits [31]. Furthermore, the cost of the
input-state reflection in RAE can be greatly re-
duced by exploiting symmetry in the ansatz cir-
cuit and Pauli operators. In particular, for number-
conserving ansatz and diagonal Pauli operators,
it is possible to reduce the costly reflection to a
k-qubit operation (where k is the number of elec-
trons). We estimate the time savings here to be
roughly an order of magnitude.

2. Improved fault-tolerant resource estimation: the
current resource accounting is quite coarse. A
fine-grained resource estimation could lead to ei-
ther more or less optimistic predictions. However,
we did not account for optimizations in the fault-
tolerant compilation. For example, one can op-
timally allocate spacetime volume between qubit
counts and time (see, e.g. Appendix C of [32]).
Moreover, recent advances in quantum error cor-
rection [33–35] may eventually lead to further re-
ductions in predicted runtimes.

3. Quantum-apt application instances: alternative
sets of molecules that are still of industrial rele-
vance may serve as better candidates for achieving
quantum advantage. Preliminary resource estima-
tions indicate that, for the set of molecules con-
sidered, even modern quantum phase estimation
techniques take on the order of hours to days to
run. We believe that a critical effort towards real-
izing quantum advantage will be the development
and identification of problem instances which are
“easy” for a quantum computer and “hard” for
state-of-the-art classical methods, while still being
of practical value.

Thus far, we have considered robust amplitude esti-
mation as a tool to speed up the energy estimation sub-
routine of VQE. Yet there are other aspects of VQE which
stand to be improved. In the outer loop of the VQE al-
gorithm, a classical optimization process is used to find
the ansatz parameters for which the corresponding cir-
cuit well approximates ground state preparation. This
process can be improved by designing better ansatz cir-
cuits [31, 36] and finding more effective methods for pa-
rameter optimization [37]. Recent work introduced the

concept of state preparation boosters [38] as a method
to reliably increase ground state overlap at the cost of
using deeper quantum circuits.

Given the remaining challenges for VQE, it is likely
that additional quantum algorithm methods will be
needed to solve problems of industrial value [39–41].
This is consistent with the perspective that VQE might
be used to get a “head start” in the state preparation sub-
routine for more powerful quantum algorithms, i.e. the
output state of the VQE calculation provides a rough ap-
proximation of the ground state that can be used as an
input for another quantum algorithm.

The next decade is sure to bring the value of quantum
computing more clearly into view. We hope this work
will help guide the community towards identifying the
first quantum computing use cases in quantum chem-
istry and we expect insights from this benchmark study
to inform future benchmarks for molecules that show
promise for early quantum advantage.
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Appendix A: Validation of single-term estimation runtime
model

In this section of the appendix we present the meth-
ods and results for validating the single-term estimation
runtime model of Equation (8).

1. Methods

An accurate theoretical analysis of RAE’s perfor-
mance is difficult to obtain due to the adaptivity of the
algorithm. In each step of inference, L is chosen to max-
imize the expected gain in Fisher information per time
spent for that sample. However, by making several ap-
proximations and assumptions, [14] arrived at upper
and lower bounds on the runtime to target estimation.
While these bounds were derived for the case of us-
ing “engineered likelihood functions” (c.f. [14]), we will
find that the bounds mostly capture the performance of
estimation with Chebyshev likelihood functions, which
we are simulating. Our goal is to test the accuracy of
these bounds through simulation of the inference pro-
cess, while relaxing some assumptions used in the run-
time model. The question we aim to answer is: how
accurate are the runtime bounds in the case where the
true sample rates P(d|θ; L) match those of the likelihood



9

function P(d|θ, λ; L) (we assume p = 1)? In practice, we
expect a discrepancy between the true sample rates and
the likelihood function used for inference because of the
discrepancy between our noise model and actual noise.
This discrepancy will, in general, make the expectation
value estimates less accurate, leading to worse perfor-
mance of the algorithm. Accordingly, we will view our
results as roughly establishing a lower bound on perfor-
mance: we expect estimation runtimes in practice to be
longer than the ones we obtain.

The three main assumptions used in the simulations
are:

1. The effect of noise is described by the exponential
decay model of Equation (7) with a known decay
parameter λ.

2. The decay parameter λ is determined by the num-
ber of effective two-qubit gates in a single Grover
iterate (accordingly, λ is independent of the Pauli
term involved in the Grover iterate).

3. The duration of the estimation process is deter-
mined by the cumulative duration of the circuit
implementation time.

Regarding assumptions 1 and 2, in practice the likeli-
hood function is simply a model for the relationship be-
tween the parameter of interest and the outcome likeli-
hoods. Therefore, our runtime model does not fully cap-
ture the case of likelihood function inaccuracies. How-
ever, the present evaluation provides a baseline for fur-
ther analysis including such inaccuracies.

Regarding assumption 3, the total estimation time
in practice will include measurement time and a la-
tency between each measurement due to subsequent re-
initialization. However, as the duration of the quantum
circuits increases, the relative proportion of time spent
on measurement and latency will decrease. Because we
will be considering circuits of considerable depth in the
regime where some quantum error correction is used,
we will take this measurement and latency time to be
negligible.

In our numerical experiments, we run simulated in-
ference under a number of different settings and esti-
mate the median error over many trials. In each trial, the
prior distribution is chosen as a Gaussian distribution
over the phase angle θ = arccos(Π) in a randomized
fashion as follows. The standard deviation of the prior
is set to σ = 0.01 and the mean is drawn from a Gaussian
distribution centered around the true phase angle with
standard deviation σ = 0.01. This choice reflects a prac-
tical strategy for energy expectation value estimation:
means of the prior would be set to values derived from
the best classical methods (in this case, coupled cluster)
and the prior standard deviations initialized to be larger
than the typical errors for the classical method used. We
have found that 0.01 is typically larger than the error be-
tween the true ground state expectation values and the
classical method expectation value.

We simulate the adaptive inference process for robust
amplitude estimation using Chebyshev likelihood func-
tions as described in [14]. We vary the true expectation
value and the layer fidelity as:

• Π = [0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9]

• e−λ = [0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999]

Note that ±Π should yield the same performance due
to symmetry of the likelihood function; accordingly,
we only consider Π ≥ 0. Ultimately we are aim-
ing to understand the relationship between accuracy
and runtime. For the higher-fidelity trials, the change
in accuracy per additional time is far greater than the
lower-fidelity trials. Accordingly, we use fewer steps
of Bayesian inference in the higher-fidelity trials. For
each setting, we simulate between 274− 354 trials and
track the error between the current estimate and the true
value at each step of Bayesian inference.

The quantity we use to assess the performance of the
estimation process is the mean squared error. However,
direct use of the mean squared error does not reflect the
quality of the estimators. This is due to occasional es-
timates far from the true value. Accordingly, we have
chosen to plot an estimate of the mean-squared error of
the 10th percentile of the estimates. That is, we first ex-
clude the worst 10% of the estimates and then compute
the sample MSE from the remaining estimates. In the
following section, we compare these adjusted MSEs to
the MSEs predicted by the runtime model.

2. Results

We present the results validating the runtime model
of Equation (8) in Figure 3. The model predicts the re-
lationship between the estimation accuracy and the ac-
cumulated runtime of the estimation. The main obser-
vation is that a majority of the data points lie within the
runtime model bounds. These data points cover a wide
range of layer fidelities, accuracies, and expectation val-
ues. Accordingly, we conclude that the runtime model
is sufficiently accurate to be used in coarse resource es-
timations, such as those generated in the main text.

We discuss some of the observed discrepancies be-
tween the model and the data. In some of the settings
(layer fidelity and expectation value), the simulated run-
time deviates from the bounds of the runtime model for
either high- or low-accuracy. The deviations for the high
accuracy (i.e. small ε) regime are simpler to rationalize.
The Bayesian nature of the RAE approach means that an
estimate can deviate far from the true value with small
probability. These bad estimates tend not to improve
with further high-L samples due to the phenomenon
of aliasing, and they can cause the outliers mentioned
above. In cases where the runtime grows without im-
provements in accuracy, we expect that there has been
aliasing leading to a bad estimate in the data. Assuming
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that this is the cause of these deviations, the likelihood
of their occurrence can be exponentially suppressed by
repeating the estimation procedure.

A possible explanation for the deviations in the model
for the low-accuracy (large ε) cases is as follows. The an-
alytical derivation of the runtime model bounds in [14]
approximates the runtime as growing continuously as
the posterior distribution variance decreases. This ap-
proximation will hold better in the large-runtime (high
accuracy) regime, but will tend to underestimate the
runtime in the small-runtime regime. The reason we ex-
pect the simulated runtime to be higher than the pre-
dicted runtime is that we expect the discretization in the
simulated setting to lead to suboptimal choice of layer-
number L during each step of the inference process. This
suboptimal choice of L would cause the accuracy to not
improve as much as in the idealized continuous case of
the model.
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FIG. 3. This figure compares the runtime model of Eq. (8) to the estimation runtimes found in simulation. Each inset plot shows
the accumulated runtime in terms of total number of circuit layers queried (computed as the average runtime of the best 90%
of trials) as a function of the empirically estimated estimation accuracy (computed as the average squared error of the best 90%
of trials). Each row corresponds to a different circuit layer fidelity and each column corresponds to a different true expectation
value. For each inset, the upper and lower bounds of the runtime model are plotted as grey curves.
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Appendix B: Quantification of circuit compilation overhead

In this section we describe the methods used to cal-
culate the circuit depths of the operations used in RAE.
The circuit depths are then used to compute the circuit
fidelities as follows. We model the circuit layer fidelity
f as the product of the fidelities of all two-qubit gates in
the circuit. The effective two-qubit gate count is mod-
eled as the depth times half the number of qubits. The
underlying assumption is that, even if a qubit is not sub-
ject to an operation in a given layer of the circuit, the de-
coherence it experiences effectively translates into a loss
of fidelity comparable to an imperfect two-qubit gate.

The RAE circuit is composed of a single ansatz circuit
A for the state preparation, followed by L layers of RAE
iterates U = AR0 A†P. The Pauli gates of P are single-
qubit operations so we ignore their contribution to the
circuit depth and thus their contribution to reducing the
circuit fidelity. Furthermore, in the accounting of fault-
tolerant resources, these Pauli gates contribute negli-
gible error and negligible time relative to other gates
because they are Clifford gates. Therefore, the impor-
tant accounting we need is of the circuit depths for the
ansatz and phase flip operations DA and DR, respec-
tively. We determine these quantities for various com-
pilation strategies that arise from the device’s connec-
tivity of the qubits. These quantities are then used to
determine the required logical gate error rate rg and the
runtime of each layer τl . We assess the circuit costs asso-
ciated to the different compilation strategies enabled by
the all-to-all connectivity of ion trap devices and the lim-
ited 2D connectivity of superconducting qubit devices.

a. Ansatz circuit The ansatz circuit we use in our
analysis is the hardware-efficient ansatz (HEA) de-
scribed in Section III D of [1]. In the case of a linear
connectivity, a single layer of this ansatz comprises two
layers of nearest-neighbor two-qubit gates. We make the
optimistic assumption that the number of HEA layers
needed to prepare a sufficiently accurate approximation
to the ground state is twice the number of qubits (or spin
orbitals). In the case of a two-dimensional connectiv-
ity, we will assume that the ansatz is implemented in
a “snake-like” arrangement in the order of the Jordan-
Wigner encoding of the spin-orbitals. In the case of all-
to-all connectivity we will assume that the device en-
ables an ansatz compilation strategy that affords a re-
duction in gate count and depth by a factor of two. We
believe this to be a conservative assumption because the
compilation from a circuit with all-to-all connectivity
into a circuit with 2D connectivity typically incurs an
overhead cost that grows with the number of qubits.

b. Phase flip operation In our analysis, the most sub-
stantial variability in the compilation is in the phase flip
operation R0 = I− 2 |0〉〈0|⊗N . Devices with more con-
nectivity will allow for a compilation of the phase flip
operation which uses fewer elementary gates and has
shorter depth.

The connectivity of the qubits is determined by the el-

Connectivity Two-dimensional All-to-all
Circuit component Ansatz Phase flip Ansatz Phase flip

Two-qubit circuit
depth N 192(N-3)(N-1) N/2 32N-96

Effective number of
gates N2/2 96(N-3)(N-1)N N2/4 32(N-3)N/2

TABLE II. Summary of compilation circuit costs. Since we
are interested in the decay of coherence due to quantum op-
erations (including the idle operation), we will compute the
two-qubit circuit depth and then multiply by N/2 to get the
effective number of two-qubit gates.

ementary multi-qubit gates the device can implement,
which, in some cases, is determined by the physical
layout of the qubits. We consider two connectivity-
dependent compilations of the phase-flip operation as
given in [42]. We name the compilations according to
their assumed connectivity:

• Two-dimensional: a planar array of qubits con-
nected in a square grid, similar to the qubit layout
of some superconducting qubit architectures [43].

• All-to-all: any pair of qubits can be coupled via an
elementary gate, which is similar to gates on ion
trap devices [44].

The characteristics of these various compilation strate-
gies are summarized in Table II.

Appendix C: Allocation of samples over Pauli terms

We now describe the method of allocating samples
over the different Pauli expectation value estimates. The
Hamiltonian of interest is decomposed into a linear
combination of Pauli terms

∑
i

µiPi, (C1)

with coefficients µi and Pauli observables Pi. The ob-
jective is to estimate the expected energy of a quantum
state |A〉 = A |0N〉. The true expectation value is a linear
combination of Pauli expectation values

〈A|H |A〉 = ∑
i

µi 〈A| Pi |A〉 = ∑
i

µiΠi (C2)

where we have introduced Πi = 〈A| Pi |A〉. The esti-
mation strategy estimates the expectation value of each
Pauli operator Π̂i separately, giving the energy estimate
Ê as

Ê = ∑
i

µiΠ̂i. (C3)

For a fixed unbiased estimation strategy used to obtain
the Π̂i, the total runtime Ti and mean squared error ε2

i of
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each estimator determine the total runtime T and total
mean squared error ε2 of the estimator Ê,

T = ∑
i

Ti (C4)

ε2 = ∑
i

µ2
i ε2

i . (C5)

We fix the target mean squared error (MSE) at chemical
accuracy ε2 = ε̄2 and aim to determine the estimation
strategy for each Π̂i which minimizes the total runtime
T.

Using the single-term estimation runtime model vali-
dated in Appendix A, for each Pauli expectation estima-
tion, we model the runtime Ti to target MSE ε2

i as

Ti =
ω

2

 λ

ε2
i
+

1√
2εi

+

√√√√( λ

ε2
i

)2

+

(√
8

εi

)2
 . (C6)

With the above relationships established, we deter-
mine the optimal allocation of runtime using the follow-
ing numerical optimization:

min
ε̄2=∑i µ2

i ε2
i
∑

i
Ti

= min
ε̄2=∑i µ2

i ε2
i
∑

i

ω

2

 λ

ε2
i
+

1√
2εi

+

√√√√( λ

ε2
i

)2

+

(√
8

εi

)2
 ,

(C7)

where ω is proportional to the duration of each layer in
the RAE circuit (c.f. Eq. 77 in [14]), µi are the coefficients
in the Pauli decomposition of the Hamiltonian, and λ is
the fidelity decay parameter in the noise model of the
RAE likelihood function.

We introduce a Lagrange multiplier Λ to incorporate
the constraint and solve for the extreme point

0 =
d

dεi

(
∑

i
Ti + Λ

(
∑

i
µ2

i ε2
i − ε̄2

))
(C8)

=
ω

2

−2λ

ε3
i

+
−1√
2ε2

i

+
d

dεi

√√√√( λ

ε2
i

)2

+

(√
8

εi

)2

(C9)

+ Λµ2
i εi

In order to arrive at an analytic solution for the εi, we
approximate the hypotenuse expression above as sim-
ply the sum of the two legs of the hypotenuse, which
upper bounds the contribution to the runtime via the
triangle inequality. The consequence of this approxima-
tion is that the allotment of runtime to each term will
be suboptimal leading to an increased overall runtime

(relative to that of the optimal allotment).

0 =
d

dεi

(
∑

i
Ti + Λ

(
∑

i
µ2

i ε2
i − ε̄2

))
(C10)

≈ ω

2

(
−2λ

ε3
i

+
−1√
2ε2

i

+
−2λ

ε3
i

+
−
√

8
ε2

i

)
+ Λµ2

i εi

(C11)

=
−2ωλ

ε3
i

+
−α

ε2
i
+ Λµ2

i εi, (C12)

where α = 1
2 (
√

1/2 +
√

8). The MSEs are determined
by solutions to

−2ωλ− αεi + Λµ2
i ε4

i = 0. (C13)

Letting a = α/Λµ2
i and b = 2ωλ/Λµ2

i , we must solve
the quartic equation ε4

i = aεi + b. The solutions in the
shot-noise limit and Heisenberg limit extremes corre-
spond to a ≈ 0, giving ε2

i = b1/2, and b ≈ 0 giving
ε2

i = a2/3, respectively.
We approximately solve the quartic to obtain ε2

i ≈
b1/2 + a2/3. Plugging back in the relevant values gives

ε2
i =

√
2ωλ

Λ1/2|µi|
+

α2/3

Λ2/3|µi|4/3 (C14)

To obtain Λ we plug the above expression into the con-
straint equation,

ε̄2 =

√
2ωλ

Λ1/2 ∑
i
|µi|+

α2/3

Λ2/3 ∑
i
|µi|2/3. (C15)

Arranging into a polynomial in Λ1/6, we obtain

(Λ1/6)4 ε̄2 = (Λ1/6)
√

2ωλ ∑
i
|µi|+ α2/3 ∑

i
|µi|2/3.

(C16)

We will solve this quartic polynomial numerically to en-
sure that the normalization is correct and that the chem-
ical accuracy constraint is satisfied. Let Λ∗ be the nu-
merical solution. The total runtime T∗ is then deter-
mined by the following procedure. First, we solve for Λ
numerically. Then we evaluate each MSE according to
ε2

i =
√

2ωλ
Λ1/2|µi |

+ α2/3

Λ2/3|µi |4/3 . Finally we evaluate the overall
runtime as

T∗ = ∑
i

ω

2

 λ

ε2
i
+

1√
2εi

+

√√√√( λ

ε2
i

)2

+

(√
8

εi

)2
 .

(C17)

Appendix D: Model of fault-tolerant quantum computation
overhead

In order to sufficiently reduce the estimation run-
times, we must sufficiently reduce the error rates of the
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quantum operations. The scalable approach to reduc-
ing such error rates is achieved with quantum error cor-
rection. While quantum error correction suppresses the
error rates of gates and measurements, it incurs an ad-
ditional cost in terms of physical qubits and processing
time. We will analyze these costs of quantum error cor-
rection assuming a state-of-the-art implementation of
the surface code [45]. Following the analysis in [46], we
consider a quantum computer architecture which runs
the surface code with physical gate error rates of 10−3.

By increasing the code distance d the logical error
rates are reduced as

ε = 10−(d+3)/2. (D1)

To protect each operation with a distance-d code re-

quires N = 2d2 physical qubits. Following the assump-
tions of [46] (that the synthesis of each gate will require,
on average 100d surface code cycles), then the fidelity of
each gate will be

f = (1− 10−(d+3)/2)100d ≈ 1− d10−(d−1)/2. (D2)

The gates which are enumerated in this model include
arbitrary-angle single-qubit rotations as well as all two-
qubit gates. Optimistic estimates [45] give surface cycle
times of 1µs. Thus, the time needed to implement the
above logical gate is 100dµs.

We incorporate these quantum error correction over-
heads into our runtime estimates by assuming that each
single layer of logical gates requires a runtime of 100dµs.
Then, both the gate layer runtime and logical gate fi-
delity are determined by the code distance d.
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