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As the quantum computing community gravitates towards understanding the practical benefits of quantum
computers, having a clear definition and evaluation scheme for assessing practical quantum advantage in the
context of specific applications is paramount. Generative modeling, for example, is a widely accepted natural use
case for quantum computers, and yet has lacked a concrete approach for quantifying success of quantum models
over classical ones. In this work, we construct a simple and unambiguous approach to probe practical quantum
advantage for generative modeling by measuring the algorithm’s generalization performance. Using the sample-
based approach proposed here, any generative model, from state-of-the-art classical generative models such as
GANs to quantum models such as Quantum Circuit Born Machines, can be evaluated on the same ground on a
concrete well-defined framework. In contrast to other sample-based metrics for probing practical generalization,
we leverage constrained optimization problems (e.g., cardinality-constrained problems) and use these discrete
datasets to define specific metrics capable of unambiguously measuring the quality of the samples and the
model’s generalization capabilities for generating data beyond the training set but still within the valid solution
space. Additionally, our metrics can diagnose trainability issues such as mode collapse and overfitting, as we
illustrate when comparing GANs to quantum-inspired models built out of tensor networks. Our simulation
results show that our quantum-inspired models have up to a 68× enhancement in generating unseen unique
and valid samples compared to GANs, and a ratio of 61:2 for generating samples with better quality than those
observed in the training set. We foresee these metrics as valuable tools for rigorously defining practical quantum
advantage in the domain of generative modeling.

INTRODUCTION

Outstanding efforts have been made in recent decades in the
search for quantum advantage, and reaching this milestone
will have a profound impact on many areas of research and
applications. Quantum advantage is generally intended as the
capability of quantum computing devices to outperform clas-
sical computers, providing exponential speedups in solving a
given task, which would otherwise be unsolvable, even us-
ing the best classical machine and algorithm [1–6]. In recent
years, a large part of the quantum computing community has
been gravitating toward a more concrete definition of quantum
advantage, namely practical quantum advantage (PQA), also
propelled by the growing interest from technology firms and
companies in various application domains. Practical quantum
advantage indicates the quest for quantum machines that can
solve problems of practical interest that are not tractable for
traditional computers [7, 8]. In other words, practical quan-
tum advantage is the ability of a quantum system to perform
a useful task faster or better than is possible with any exist-
ing classical system [9]. As long as the superiority is demon-
strated in the real-world setting, under the real constrains and
problem size of interest, one can waive the need for demon-
strating an asymptotic scaling with problem size, which is the
usual emphasis in algorithmic quantum speedup [10]. Our
work focuses on further specifying and measuring practical
quantum advantage in the context of generative models, which
have been identified as promising candidates for harnessing
the power of quantum computers [11]. There have been sev-
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eral contributions that outline the potential benefits and limi-
tations of using quantum generative models as alternative or
enhancers to classical models [12–22]. However, we still lack
a unitary vision of what practical quantum advantage exactly
means when it comes to generative models.

We aim to provide such a vision and equip it with quantita-
tive tools to evaluate progress toward its accomplishment. We
suggest that generative models’ performance be assessed by
their capability to generalize, i.e., generate new high-scoring
diverse solutions for the task of interest [23, 24]. We highlight
that our definition of generalization differs from the one out-
lined within the theoretical setting of computational learning
theory [20–22, 25], i.e., a model’s ability to learn the ground
truth probability distribution given a limited set of training
data. Our approach follows closely the definitions and frame-
works used by other ML practitioners (see e.g., [23, 26]),
which focus on scalable and practical methods to evaluate the
performance of generative models. We believe that the two
approaches complement each other in a practical context, and
in Appendix E, we provide a demonstration of the correlation
between the approaches.

In this work, we present a unified framework to measure
the generalization capabilities for both state-of-the-art classi-
cal and quantum generative models, and provide a first com-
parison between different models that highlights the supe-
rior performance of quantum-inspired methods over classi-
cal ones. We compare our practical vision of generalization
to the computational learning theory standpoint (Section I A)
and to previously developed frameworks (Section I B). In Sec-
tion II, we propose our quantitative definition of generaliza-
tion, while Section III illustrates our discrete-dataset-based
framework to assess this capability. By leveraging discrete
datasets relevant to many application domains [27], we can
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unequivocally measure the generalization capabilities of any
generative models for practical tasks. In Section IV we intro-
duce robust sample-based metrics that allow one to conduct a
comprehensive quantitative assessment of a model’s practical
generalization capabilities and detect common pitfalls associ-
ated to the training process. Furthermore, in Sections V and
VI we illustrate our approach by comparing models from two
separate regimes, namely fully classical Generative Adversar-
ial Networks (GANs) and quantum-inspired Tensor Network
Born Machine (TNBM) architectures, for a specific task with
relevance in financial asset management.

To the best of our knowledge, this is the first proposal of
an approach that combines a heuristic-based analysis with
an application-based dataset to quantitatively evaluate gener-
alization of unsupervised generative models and to directly
compare classical and quantum-inspired models side by side
in search for practical quantum advantage.

I. RELATED WORKS

Generative models are powerful and widespread algo-
rithms, but the evaluation of their performance, especially on
real-world datasets, is an open challenge. A huge variety of
metrics and studies have been proposed to evaluate genera-
tive models, which can be found in two distinct sub-fields
of machine learning (ML) research: computational learning
theory [25, 28, 29] and models’ performance benchmark-
ing [23, 26, 30–32]. First, we aim to give a brief overview
of these two areas of research, and to draw a clear distinction
between them, pointing to the advantages and limitations of
each for evaluating unsupervised generative models. Subse-
quently, as this work predominantly contributes to the models’
performance benchmarking sub-field, we focus on providing
an overview of the main evaluation strategies that exist in this
literature domain, pointing to Ref. [30, 33] for a thorough re-
view.

A. Two Evaluation Approaches

The language utilized in the sub-fields of computational
learning theory and models’ performance benchmarking
varies greatly when discussing the evaluation approaches of
unsupervised learning algorithms. There is a common goal of
finding the best model (i.e., the one that ‘generalizes’ best);
however, the optimal criterion and the generalization defini-
tion differ in the two perspectives.

In the context of computational learning theory, the opti-
mal model is the one that has best approximately learned the
ground truth probability distribution from the available train-
ing data [34]. Thus, generalization coincides with good in-
ference capability. Upon taking this to be the definition of
generalization, the model is able to achieve high-quality per-
formance if its output distribution post-training is sufficiently
close to the (unknown) ground truth. By using the Probably
Approximately Correct (PAC) approach [34], one can derive
worst-case generalization error bounds for a very broad range

of models. These insights are incredibly useful for identifying
clear cases in which models will not provide value, especially
in the search for circumstances where quantum algorithms
might exhibit an advantage over classical ones [21, 22, 29].
On real-world datasets, this definition of generalization can
be extended to evaluating the difference between the trained
model distribution and the empirical approximation of the
ground truth, using a quantitative distance metric of choice.

However, we note that this is where the definition of gen-
eralization in the context of computational learning theory
diverges from that of the models’ performance benchmark-
ing domain. For many practical problems, indeed, the op-
timal generative model is the one that can generate unseen
high-quality data points that are solutions to a specific task,
i.e., samples drawn from the ground truth distribution, but
that did not exist in the empirical distribution used for train-
ing [23, 24, 35]. This implies that the emphasis is on the
model being able to produce samples that come from the un-
seen part of the ground truth distribution: this capability of
generating novel, diverse and good solutions is what is de-
fined as generalization in this practical context [23]. Hence, if
a model is provided with the complete set of solutions in the
training process, it cannot generalize. Instead, since all the
samples from the support of the ground truth distribution are
given, the model would be restricted to exhibiting a behav-
ior that we describe as memorization, in even the best train-
ing scenario. In computational learning theory, this behavior
would still be seen as a form of high-quality generalization
performance, as long as the model learned the right features
of the distribution. This is usually a case of interest in den-
sity estimation tasks; however, in our practical context, this
behavior is distinct from generalization such that it can be de-
tected when it is not useful for specific real-world applica-
tions, where the generative model is trained with the purpose
of generating novel samples from the ground truth distribu-
tion.

In summary, the main difference between the two ap-
proaches is that in the models’ performance benchmarking
domain, the goal is to capture the model’s generalization per-
formance as a novelsamples generator (“efficient generator”),
not as a ground truth learning algorithm(“efficient learner”),
as it is the case in computational learning theory. We highlight
that an “efficient learner” does not always imply an “efficient
generator” for a practical task at hand, and vice versa. The
exact relation between the two approaches, especially its rig-
orous proof, is out of the scope of this paper (despite a first
empirical demonstration in Table I), but it is certainly an ex-
citing avenue to bridge the gap between the two communi-
ties. We believe that the practical evaluation schemes, further
described in Section I B, can augment our understanding of
models’ performance by providing a detailed picture, based
on evaluating specific desired features of generated data, as
well as by highlighting their tendency to exhibit training fail-
ures. However, we recognize that this practical evaluation
does not provide the same insights with regard to scaling com-
plexity as those in computational learning theory. Therefore,
we strongly emphasize that both research sub-fields are neces-
sary to fully evaluate generative models, and that when possi-
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ble, results from both realms should be included. For the pur-
poses of PQA, we adopt and build on the more practical per-
formance benchmarking approaches to generalization, which
are meaningful enough to industrial real-world generative ap-
plications.

As we have seen the definition of generalization to take on
slightly different meanings depending on the research domain,
we now formally distinguish this practical generalization from
the one defined in computational learning theory by provid-
ing the names validity-based generalization and quality-based
generalization when defining our framework.

B. Models’ Performance Benchmarking

A common approach to evaluate generative models uses
statistical divergences, such as the Kullback-Leibler diver-
gence [36] and the Total Variation Distance [22]. Unfortu-
nately, the sample complexity of such quantities scales poorly
with the dimensionality of the distribution under examination,
proving them inadequate in high-dimensional spaces. To over-
come this limitation, alternative evaluation metrics with poly-
nomial sample complexity have been proposed, such as Incep-
tion Score (IS) [37], Frechét Inception Distance (FID) [38],
and Kernel Inception Distance (KID) [39]. Additional strate-
gies include utilizing kernel methods such as measuring the
Maximum Mean Discrepancy (MMD) [28], or neural net-
works to estimate statistical divergences [40].

The main limitation affecting divergence-based metrics lies
in that a single number summary is used to score a model,
thus being unable to distinguish its different modes of fail-
ure. In light of this consideration, Ref. [41] introduced preci-
sion and recall as metrics to evaluate generative models, hence
proposing a 2D evaluation to disentangle the various scenar-
ios that can arise after training. Follow-up contributions have
attempted to extend this idea from discrete to arbitrary prob-
ability distributions [42], and to improve precision and recall
definitions and computation [43, 44].

This plethora of methods suggests how challenging it is to
evaluate generative models. Evaluating the evaluation met-
rics themselves is an even more complicated task, despite the
paramount importance of choosing the right metric for draw-
ing the right conclusions [45]. Ref. [46] addresses such a
problem, identifying a few necessary conditions that a met-
ric should satisfy in order to qualify as a good performance
estimator. One of these conditions is the ability of a metric to
detect overfitting. As highlighted by Ref. [47], overfitting is
basically equivalent to memorization, i.e., anti-generalization,
and it is not always well defined, despite its importance.

While being well established in the context of image clas-
sification, notions of generalization are less standardized for
generative models. Initial studies on this topic in the context
of generative models can be found in Refs. [40, 48]. Nonethe-
less, none of the available metrics is specifically tailored to
assessing generalization capabilities, or, in other words, to de-
tect overfitting upon occurrence [32]. So far, very few contri-
butions have been proposed to address the interesting problem
of studying and quantifying generalization from a real-world

application perspective for generative models. This knowl-
edge gap becomes exceedingly evident when looking at the re-
cent literature contributions to the field of quantum generative
modeling. Several of these works have hinted at the concept
of generalization, but have ultimately restricted their results
to replicating a given target probability distribution [24, 49–
52]. Leaving such a question for future research indicates the
difficulty in benchmarking both classical and quantum mod-
els on real-world datasets for their generalization capabilities.
Our work aims at filling this gap: we propose a well-defined
approach to practical generalization, deepening insights gath-
ered from Ref. [26], and adequate metrics to quantify such
capability, following up on the authenticity metric proposed
in Ref. [31].

Ref. [26] proposed a strategy to analyze generalization in
generative models, which consists in probing the input-output
behaviour of generative models by projecting data onto care-
fully chosen low-dimension feature spaces. By comparing
the training and the generated distribution in these spaces,
it is possible to assess whether a model can generate out-of-
training samples. However, this contribution focuses only on
spotting unseen (i.e., non-memorized) samples, without ques-
tioning whether these new samples are meaningful data for
the task being solved, or useless noise. Ref. [53] hints at
this limitation, referring to some of the results in Ref. [26]
as anomalous generalization behaviour, where the generated
distribution differs significantly from the training distribution.
The approach we propose in this work takes off from these
two contributions. It goes deeper into the formal definition
of generalization, identifying different regimes that allow us
to assess if a generative model can generate samples that are
new high-quality solutions to the problem at hand. Our ap-
proach is able to discriminate between anomalous generaliza-
tion and generalization to valid and good samples. Inspired by
the numerosity feature map proposed in Ref. [26], we focus
our work on discrete probability distributions. This choice al-
lows us to avoid the introduction of complicated embeddings,
which are instead required for most of the evaluation metrics
proposed so far, and it is also more in line with our interest
in extending the generalization study to quantum models in
search for practical quantum advantage.

In addition to defining the approach, we introduce several
quantifiable measures of the practical generalization concepts
we formalize. Ref. [31]’s proposal of the authenticity metric
to identify data-copied samples paved the way for our gener-
alization metrics. We share their starting point that precision
and recall are independent of generalization capabilities, as
the latter is not properly assessed by the former. Additionally,
we share their point on the importance of the novelty feature
of the samples generated by a model. The metrics we propose,
though, go beyond the authenticity metric in that they aim at
equipping the “novelty space” with estimators that quantify
important features, i.e., fidelity, rate and coverage of such an
unseen space. The focus of our evaluation metrics revolves
around the out-of-training generated samples, disregarding the
known data.

To better contextualize our metrics with respect to previ-
ous works, we highlight that we share the starting point of
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Ref. [41]. Hence, we propose multiple generalization met-
rics to disentangle different features and modes of failure.
Additionally, our metrics satisfy the conditions expressed in
Ref. [46]: they are able to detect overfitting and mode col-
lapse. The generalization metrics proposed in this work aim
at starting a new thread in comparing classical and quantum
generative models on real-world applications, focused on as-
sessing if they are able to generate new valid and valuable
data. We see this approach as a necessary step forward in the
models’ performance benchmarking domain for demonstrat-
ing practical quantum advantage, not necessarily to be used
in isolation to determine overall quality, but rather alongside
other evaluation metrics and insights obtained from computa-
tional learning theory to provide a comprehensive assessment
of these powerful data generators.

II. GENERALIZATION

Unsupervised generative models aim at capturing implicit
correlations among unlabeled training data in order to gener-
ate samples with the same underlying features. In this work,
we focus on binary encodings of datasets with discrete val-
ues, and therefore, discrete probability distributions. This is
needed to facilitate the comparison of quantum and classi-
cal generative models, and to allow for a more accurate and
unambiguous evaluation of generalization as opposed to the
continuous case, as further clarified in Section II C.

More concretely, given a dataset DTrain = {x1, x2, ..., xT },
where each sample xt is anN -dimensional binary vector such
that xt ∈ {0, 1}N with t = 1, 2, . . . , T , we can train a
generative model to resemble the unknown probability dis-
tribution P (x) from which the samples in DTrain were drawn.
We denote these samples as DGen = {x1, x2, ..., xG}, where
each xg is again an N -dimensional binary bitstring, with
g = 1, 2, . . . , G. As it will be shown later, the only re-
quirement for the data distribution P (x) is to have a support,
which is a “valid” sector, and a complement, which is a set of
noise or undesirable features. Many real-world datasets can be
represented this way: for example, portfolio optimization as
demonstrated in our work, as well as molecular design prob-
lems [54]. Remarkably, the notion of a constraint that defines
valid and invalid spaces arises naturally within the context of
combinatorial optimization as the constraint is usually part of
the problem definition [27, 55].

Since the goal of the present work is to compare the gen-
eralization performance of models for measuring practical
quantum advantage, we introduce formal definitions and met-
rics in Section IV to quantify different aspects of the prac-
tical behaviours that arise when we sample from the gen-
erative model. To further distinguish these definitions from
those in computational learning theory, we provide contextual
names: validity-based and quality-based generalization. Here,
we provide a brief high level introduction of them, presenting
the essential concepts for studying various flavours of gener-
alization.

A. Pre-Generalization

We refer to pre-generalization as the generative model’s
ability to go beyond the training set DTrain by producing un-
seen outputs. More precisely, for any level of generalization
to occur it is necessary - but not sufficient - that there exist
some points xg such that

xg ∈ DGen ∧ xg /∈ DTrain. (1)

However, these outputs may not be samples distributed ac-
cording to P (x); for example, they may just be meaning-
less noise instead. In other words, pre-generalization is the
model’s ability to generate any new output - whether it is dis-
tributed according to P (x) or not (Figure 1). Note that we
consider this behaviour to be a prerequisite for a model to
be able to generalize, and not generalization in and of itself.
As mentioned above and further specified below, to have any
kind of generalization, a model must first be able to generate
data beyond the training set, and the generalization potential
is higher if the amount of unseen data is maximized. This im-
plies that the training set cannot be exhaustive, i.e. the number
of unique1 training bitstrings must be less than the number of
unique bitstrings that can be sampled from P (x). To discover
new data, the training dataset should not consist of all of the
bitstrings that could be sampled from the original distribution
(i.e. its support).

The pre-generalization behaviour can be verified with our
exploration metric E, defined in Section IV A, that quantifies
how many generated samples were not included in the train-
ing set. We note that this quantity has a similar definition to
the authenticity metric in Ref. [31], that captures sample nov-
elty. However, our exploration metric is computed directly
from samples rather than requiring an embedding scheme and
a separate classification network. This quantity allows one to
investigate the general questions: “Can the model reach out-
of-training data points? And with which frequency?”.

B. Validity-Based Generalization

We refer to validity-based generalization as the generative
model’s ability to go beyond the training set DTrain and effec-
tively produce new bitstrings living in a given solution space
with the underlying distribution P (x) (Figure 1). In other
words, the model is able to learn a fixed particular feature
about bitstrings drawn from P (x) and produce new samples
with the same feature, where this feature is specified via a con-
straint on the bitstrings. More precisely, the generative model
outputs samples xg such that

xg /∈ DTrain ∧ xg ∈ support of P (x). (2)

We remark here that this approach for validity-based gen-
eralization is task-independent, as the metrics are exclusively

1 Bitstrings = {00, 00, 11}, unique bitstrings = {00, 11}.
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sample-based and agnostic to the specific use case, or more
specifically, independent of the quality associated to each bit-
string. In Section III we highlight the essential conditions
one needs to meet when defining an appropriate task to study
validity-based generalization.

We evaluate the validity-based generalization behaviour in-
troducing the three metrics of fidelity F , rate R, and coverage
C. In a nutshell, F quantifies the probability that a model
generates unseen samples that are valid results rather than un-
wanted noise. R quantifies the frequency at which a model
produces unseen and valid results. C quantifies the fraction of
unseen and valid results retrieved among all the potential valid
and unseen samples. These metrics allow one to answer the
following general questions, respectively linked to the three
generalization estimators presented above:

• F : “How effectively can the model distinguish between
noisy and valid unseen results?”

• R: “How efficiently can the model reach unseen and
valid results?”

• C: “How effectively can the model reach all unseen and
valid results?”

C. Quality-Based Generalization

We refer to quality-based generalization as the generative
model’s ability to go beyond the training set DTrain and ef-
fectively produce bitstrings living in a given solution space
with underlying distribution P (x), where the new bitstrings
can be mapped to a real number indicating their quality. While
there can be many examples of functional maps that one could
use to assign each bitstring a score to be maximized, we em-
phasize optimization as a natural choice for assigning such a
value to each sample, as proposed by Refs. [23, 24, 56]. In
this case, the score is quantified by a cost to be minimized.
In other words, optimization provides a natural framework to
introduce quantitative estimators of generalization, as a gen-
erative task can be equipped with a well-defined cost func-
tion, indicating the quality of samples. The framework pre-
sented here combines generalization and optimization as a
promising strategy towards the definition of quantitative met-
rics. We highlight that if one uses a generative model as an
optimizer, the success of the algorithm depends on the gener-
ation of high-quality solution candidates, rather than inferring
the ground truth data distribution as it is the case in computa-
tional learning theory.

When focusing on quality-based generalization, one is in-
terested in generating samples that satisfy a validity criterion,
but also have associated costs that minimize a given objective
function (Figure 1). When considering continuous data distri-
butions (e.g., in image generation tasks), assessing the quality
of samples is particularly challenging, as embedding and non
trivial transformations are needed in order to utilize the avail-
able metrics (see, e.g., Refs. [26, 31]). Hence, on purpose we
limit the scope of this work to discrete datasets, since this set-
ting provides a more accurate and unambiguous evaluation of
the generalization capabilities.

A generative model thus exhibits quality-based generaliza-
tion if it is able to produce at least some unseen and valid
samples that have on average similarly low (or lower) cost
values than the ones associated to at least some of the training
samples. More precisely,

xg satisfies Eq. (2) ∧ f(DGen, c(x)) < f(DTrain, c(x)), (3)

for a given suitable function f (e.g., the minimum sample cost
c(x) in each sample set) that depends on how strict the cost
minimization requirements are for the problem under exami-
nation (see Section IV C).

Developing metrics for assessing quality-based generaliza-
tion is a task-dependent challenge as it allows one to evaluate
the model’s sample quality, according to a specific task and
measured by its associated cost function.

In Section IV C, we introduce two versions of the sample
quality metric, induced by a different choice of f : the first one
evaluates the model’s ability to generate a minimum cost value
that is lower than anything in the training set, whereas the
second accounts for a diversity of samples whose cost is below
a user-defined percentile threshold. Even though the former
could seem more adequate to quantify the generator’s ability
to go beyond the sample quality available in the training set,
it may be the case that producing the lowest cost value is not
the only desired behaviour of the task. For instance, it may
be that the desired behaviour is to generate diversity of new
samples with a cost comparable to the lowest values found in
the training set. In this scenario, the latter version allows one
to reward alternative solutions without restricting the model
only toward values below the training threshold. Since for
many practical optimization tasks one cares about reaching a
diverse pool of high-quality solutions, we also see value in
considering the number of unique samples with a lower cost
value than a user-defined threshold in the training set (e.g., the
minimum value in the training set).

The quality-based generalization metrics allow us to inves-
tigate the general question: “Can the model reach unseen and
valid results that are more or just as valuable than the best in
the training set?”.
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FIG. 1. A visual representation of generalization-related con-
cepts. The figure shows the different behaviours a model can ex-
hibit when generating data, using a 3x3 Bars and Stripes dataset as
an example. The top two rows display a set of samples x distributed
according to the data distribution P (x); note that only a subset of
the 3x3 Bars and Stripes dataset is displayed, rather than the full set
of patterns. The third row contains samples that do not belong to
this dataset (Noise). The fourth row contains a subset of samples
xt ∈ DTrain used for training and distributed according to PTrain(xt),
while the bottom row shows a new set of samples xg produced by
the model and living in DGen. Note that each sample contains an as-
sociated toy-score that corresponds to the samples’ associated cost.
In this toy example, the samples are assigned a real-valued score in
(0, 1), except for noisy samples that don’t have an associated cost as
they are not part of the valid solution space. The bottom row displays
four samples from the generated queries, each of which is tagged
with a different model behaviour: memorizing data fromDTrain (blue
dot), producing data outside ofDTrain that may be noise (yellow dot),
generalizing to new data distributed according to P (x) (purple dot),
and generalizing to new data distributed according to P (x) that con-
tains a minimum value to an associated cost function (red dot).

III. GENERALIZATION TASK DEFINITION

In order to properly assess generalization from the practical
perspective, the generative model’s task must meet some es-
sential requirements. Such assumptions do not limit the scope
of our approach as they simply provide a robust definition of
the task at hand.

As previously specified, we focus our analysis on binary
encodings of discrete datasets DTrain = {x1, x2, ..., xT }, with
xt ∈ {0, 1}N . We can thus identify a search space U of size
2N , that contains all possible N -dimensional bitstrings. For
validity-based generalization, there must exist a subspace of
U containing the set of bitstrings we would like our trained
model to generate. We refer to this as the valid solution space
S, that includes all the samples that exhibit a given desired
feature. Hence, the model aims to approximate the underlying

unknown data distribution, defined as:

P (x) =
1

|S|
,∀x ∈ S. (4)

We highlight that the notion of validity produces a non-
trivial distribution of valid samples across the overall search
space U , adding complexity to the problem despite the data
distribution being uniform over the solution space S. We em-
phasize that this general solution space S will contain differ-
ent bitstrings for various representational datasets of interest.
For instance, Figure 1 displays samples from the well-known
Bars and Stripes dataset [57]: in this case, the solution space S
would contain all valid bar and stripe patterns, some of which
are shown in the top row of the figure. Alternative datasets
could focus on solution spaces defined by a parity constraint,
by a cardinality constraint or by any other property of inter-
est. We highlight that the solution space must have a well
defined notion of validity that can be evaluated for each of the
bitstrings in U to verify whether or not they live in its subset
S.

The model’s task is therefore to generate novel samples in
S, after a learning process involving a limited number T of
unique training samples, i.e., T = ε|S|, where the seen por-
tion ε� 1 is a small parameter quantifying the percentage of
S that gets seen during training. Note that this is a necessary
requirement for generalization because it guarantees that the
training set is not exhaustive.

With T training samples, the model has access only to an
approximated version of the data distribution, that we denote
as the training distribution:

PTrain(x) =
1

T
,∀x ∈ DTrain. (5)

For quality-based generalization, there is an additional re-
quirement as this behaviour depends not only on the validity
of the bitstrings, but also on the value associated to each pat-
tern, according to a cost function c(x). As such, in order to
assess quality-based generalization, it is necessary for the task
of interest to have a well-defined objective function that indi-
cates the cost of each bitstring, in search for minimum values.

As we would like for our model to learn the valid bitstring
patterns as well as to generate patterns with low-cost values,
it is integral to re-weight the dataset distribution in Eq. (4).
Here we use a softmax function in order to introduce cost-
related information in the training data set. In this scenario,
the training samples approximate the following re-weighted
training distribution:

P (w)
Train(x) =

e−βmc(x)∑T
i=1 e

−βmc(x)
,∀x ∈ DTrain. (6)

Following Ref. [24], 1
βm

was chosen to be the standard de-
viation of the costs in the training data, whereas c(x) is the
cost of each sample bitstring.

In summary, the two main essentials for evaluating respec-
tively validity-based and quality-based generalization are the
following:
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• There exists a well-defined solution space S, contain-
ing bitstring patterns that are valid according to easy to
specify and verify constraints.

• There exists a well-defined cost function c(x) that can
be computed to assess the generalization for all valid
bitstring patterns.

IV. METRICS FOR EVALUATING PRACTICAL
GENERALIZATION

As described in Section II and Section III, practical gener-
alization occurs when a model generates novel samples that
display desired features and belong to the support of some
underlying distribution. To give a quantitative definition of
the validity- and quality-based generalization metrics, we first
need to clarify the nomenclature of all the spaces involved. We
have already defined the collection of all queries generated
by a trained generative model as DGen, where |DGen| = Q.
We then call Gsol the multi-set of all valid and unseen queries,
which reflect the model’s validity-based generalization capa-
bility. We further define a subset of Gsol that contains all its
unique bitstring solutions as gsol, thus the only difference be-
tween Gsol and gsol is that in the latter each bitstring appears
only once, whereas in the former there can be many occur-
rences of the same sample. Lastly, we define the multi-subset
of unseen queries as Gnew, where some of these queries might
be unwanted noise and hence reflect the model’s exploration
capability. Note that we use uppercase variables for multi-sets
and lowercase variables for unique sets, and a visual represen-
tation of the sets in play can be found in Figure 2.

Search Space 

  Train

gsolSolution Space

  sol

  new

FIG. 2. A visual representation of all possible spaces where a
generated query might be located. Each query is represented by
a color-coded dot, where the color-code is the same as in Figure
1 (Data-Copying: blue, Pre-Generalization: yellow, Validity-Based
Generalization: purple) and the color-shade represents a unique bit-
string sample. We take all non-unique queries outside of the training
set to be in the multi-subset Gnew (inside the yellow oval), whether
they are in the solution space S or not. Furthermore, we take Gsol

to be all non-unique queries that exist in the solution space (inside
the pink oval) and gsol to be all of the unique queries among Gsol

(zoomed-in). Lastly, if a query exists in DTrain, it is a memorized
count from the training set. We note that the quality-based queries
(not shown) must exist inside of the solution space.

Having clarified the nomenclature of the spaces involved in

the task, we can now proceed to the definition of the general-
ization metrics.

A. Evaluating Pre-Generalization

While a model’s capability to generate unseen samples that
are not valid or valuable solutions to the task at hand is not
considered generalization behaviour in and of itself, it is an
important prerequisite for generalization from the practical
perspective. If the model is not able to go beyond the training
set, even just to produce noisy outputs, then the model is not
passing the first requirement for generalization - the ability to
produce novel data points. To conduct a pre-generalization
evaluation prior to assessing for any kind of validity-based
or quality-based generalization, we introduce the exploration
metric E, that quantifies the fraction of generated queries that
are new data points, namely:

E =
|Gnew|
Q

. (7)

IfE ≈ 0, the model will not pass the first required check for
practical generalization. This may be due to an intrinsic prop-
erty of the model, i.e., the inability to generate novel data, or
it can be an artifact of the training set being (almost) exhaus-
tive, because nothing new can be generated if the training data
covers (almost) all the entire valid space.

B. Evaluating Validity-Based Generalization

We introduce three sample-based metrics that describe each
model’s validity-based generalization behaviour after train-
ing: fidelity F , rate R, and coverage C.

Fidelity describes the model’s ability to distinguish an un-
seen and valid sample in S from a meaningless output (i.e.,
noise) and it quantifies the fraction of unseen queries that fall
into the unseen solution space. It is defined as follows:

F =
|Gsol|
|Gnew|

. (8)

Rate describes the model’s ability to efficiently produce un-
seen and valid samples and it quantifies the fraction of all
queries that fall into the unseen solution space, namely:

R =
|Gsol|
Q

. (9)

Coverage describes the model’s ability to recover all unique
unseen and valid samples and it quantifies how much of the
solution space that was unexplored gets covered by the gen-
erative model’s queries. It is defined as follows, where we
highlight that the ratio does not take into account the queries’
frequencies, as a single occurrence has the same weight as a
one that appears multiple times:

C =
|gsol|
|S| − T

. (10)
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We highlight that one should expect the value of these metrics
to depend on the number of queries Q that are retrieved from
the trained model. For example, to have a quality coverage of
a space, i.e., C → 1, one should have enough samples that
fall in the entire unexplored space. However, this dependency
does not constitute a limitation for drawing a comparison be-
tween models, as we can fix the number of queries for all
the models under investigation, and evaluate and fairly com-
pare their generalization performance at the given number of
queries. Moreover, in Section VI B, we further showcase the
values of C as we increase the number of queries toward and
beyond the size of the solution space. We see a clear trend to-
wards the metric ideal limit C → 1 as we increase the number
of queries. Conversely, in Appendix D we demonstrate that
fidelity and rate are not dependent on the number of generated
samples, despite being sample-based metrics.

We note that the different metrics are not completely in-
dependent, as there are mutual relations between them. For
instance, it can be noted that rate and fidelity are correlated,
as R = EF . Rate is the same as fidelity whenever a model
generates exclusively unseen queries, which only holds in the
case of perfect generalization (or in pathological cases such
as mode collapse to unseen and valid queries). Another exam-
ple of mutual relation between the metrics is that C ≤ EQ

|S−T | ,
which implies that C < E for large solution spaces and lim-
ited queries budget.

To further clarify the expected metrics’ values for a well-
generalizing model, we highlight that these metrics will be
exactly 1 when evaluated for a model that exhibits the highest
validity-based generalization. However, in a practical sense,
this might be difficult to achieve; we are then equipped with
a theoretical upper bound of 1 for all metrics, with the un-
derstanding that one should aim to reach this limit to obtain a
robust model for generalization.

Lastly, we note that the pre-generalization condition in Eq.
(1) impacts the validity metrics; hence, exploration E is di-
rectly related to (F,R,C). For F , the pre-generalization con-
dition in Eq. (1) must be met in order for the metric to be
well-defined. When the condition is not met, F will be null,
andC,R = 0. Therefore, our metrics rely on the model’s abil-
ity to go beyond the training set, and will indicate if the model
is only data-copying. Other properties from the model can be
inferred from these metrics as demonstrated in Table V in Ap-
pendix B. For example, a metric which measures the degree
of data-copying could be defined asD = 1−E, hence perfect
memorization would mean E = 0. We highlight that, in this
framework, one can additionally use our proposed metrics to
detect alternative and complementary behaviours to general-
ization and define additional metrics that are tailored towards
specific properties one would like to investigate.

In conclusion, we propose to utilize the metrics (F,R,C) to
introduce a 3D quantitative investigation of the generalization
capabilities mentioned in Section II B, that we report here for
convenience:

• Fidelity, F , evaluates how effectively the model can dis-
tinguish between unseen valid and invalid bitstrings.

• Rate, R, evaluates how efficiently the model can pro-

duce unseen and valid bitstrings.

• Coverage, C, evaluates how effectively the model can
retrieve all unseen and valid patterns.

C. Evaluating Quality-Based Generalization

To quantify the quality-based generalization properties of a
generative model, we propose adequate metrics addressing the
sample quality of the generated samples, which speaks to how
many of the queries are more valuable results in the context of
a specific application domain, i.e., how many bitstrings have
a low enough associated cost. Since the quality of a result
depends on a given cost function, this metric is task-specific,
as opposed to the validity-based generalization case that only
requires the notion of validity of a query, according to a well-
defined hard constraint.

More precisely, we introduce different nuances of this sam-
ple quality metric for our quality-based generalization assess-
ment, proposing two different versions with slightly different
implementations of f in the right-hand side condition of Eq.
(3).

Firstly, we consider the Minimum Value (MV ) of the costs
associated to the queries generated by the model as a rele-
vant evaluation metric, since in many optimization applica-
tions the main goal is to find the solution that minimizes the
cost, or equivalently, the sample with the best quality. This
corresponds to choosing f = min, so that the condition of
Eq. (3) becomes:

xg satisfies Eq. (2) ∧ min
xg∈DGen

c(xg) < min
xt∈DTrain

c(xt). (11)

Despite its practical impact, this punctual metric can be highly
unstable if it is not supported by enough statistics as the met-
ric relies on generating one specific value, the lowest. Since
generating the query with the lowest cost is highly dependent
on the selected batch b of queries, we define this metric as
an average across B batches of queries to avoid biasing the
results due to an anomalous batch. In other words, for each
generative model evaluated, we define:

MV =
1

B

B∑
b=1

min
xg∈Gb

sol

c(xg).

For the results presented in this work, we fixed B = 5. In-
cluding such average in the definition of the MV metric itself
contributes to alleviate its intrinsic instability, thus making it
more robust for quality-based generalization evaluation.

Secondly, we define the Utility U as the average cost of
a user-defined set Pt of unseen and valid samples from the
generative model. Specifically, Pt(D) is the set obtained from
taking the t% of samples with the best quality (lowest costs)
in D. Setting t = 5, this corresponds to choosing f = 〈·〉 on
the set P5, and the condition of Eq. (3) reads:

xg satisfies Eq. (2) ∧

〈c(xg)〉xg∈P5(Gsol)
< 〈c(xt)〉xt∈P5(DTrain)

.
(12)
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Given its set-based definition, this metric is much more sta-
ble than the previous one.

Lastly, we note that it is possible to give another definition
of sample quality, which simply consists in counting the num-
ber of unseen and valid queries whose cost is lower than a spe-
cific critical cost value c′(x) in the training set. For example,
one could take c′(x) to be the lowest cost value in the training
set i.e., c′(xt) = min

xt∈DTrain
c(xt). When utilizing this estimator,

one is interested in verifying the following condition:∣∣∣{xg s.t. c(xg) < c′(xt)}
∣∣∣ > 0, for xt ∈ DTrain, (13)

where clearly a higher value of the left-hand side implies a
better sample quality. Even though this quantity can carry in-
teresting information, we don’t include it among our quality-
based generalization metrics as it is a harsh restriction to im-
pose and may only be important for optimization tasks that are
looking for many potential MV bitstrings. We highlight that
our framework is not limited to the metrics proposed so far,
but allows one to define several other figures of merit which
can be relevant for specific applications at hand.

We use these metrics to introduce insights into a
model’s quality-based generalization capabilities, and deter-
mine which models are able to generate the most value for
task-specific challenges. We emphasize again that this ap-
proach can be utilized beyond cost minimization problems, as
long as there is a quantitative quality scale associated to each
bitstring in the valid subspace.

V. APPROACH DEMONSTRATION

To present the robustness of our approach in evaluating and
comparing generative models, we choose a well-defined task
and two families of models: classical Generative Adversar-
ial Networks (GANs) and quantum-inspired Tensor Network
Born Machines (TNBMs). The following sections outline the
specific use case (Section V A) and the generative models
(Section V B) selected for our experimental demonstrations.

A. Use Case

To demonstrate a practical application of our approach, we
choose an important use case in the finance sector that ad-
dresses the challenge of cardinality-constrained portfolio op-
timization. The goal of such task is to minimize the risk σ
associated to a collection of assets, randomly selected from
the S&P500 market index, for a fixed desired return ρ. Below,
we highlight how this task is amenable to the framework and
requirements described in Section III.

Given a fixed size N of the asset universe, a portfolio can-
didate can be encoded into a bitstring of lengthN , where each
bit corresponds to an asset either being selected in the portfo-
lio (1) or left out of the portfolio (0). Therefore, the search
space U of all possible portfolios grows exponentially with
the asset universe size, i.e. |U| = 2N .

To assess validity-based generalization within this task, we
define the solution space S to be comprised of all bitstrings
containing a fixed number k = N/2 of selected assets, i.e., a
candidate solution must be a bitstring with a fixed Hamming
weight equal to k.

With such k-cardinality constraint, the problem solution set
S contains all possible portfolio bitstrings x that fit this con-
straint. Thus, its cardinality is:

|S| =
(
N

k

)
. (14)

To further assess quality-based generalization, we define
an objective function that encodes the quality of each bit-
string, namely the financial risk σ associated to each port-
folio, which in the case of the Mean-Variance Markowitz
model [58] can be efficiently computed by means of Mixed
Integer Quadratic Programming (MIQP) [59]. Unlike when
investigating validity-based generalization, we use σ to re-
weight the training dataset with the softmax function de-
scribed in Eq. (6).

As such, this task satisfies both the previously introduced
conditions necessary to evaluate validity-based and quality-
based generalization. We again emphasize that our frame-
work can be applied to any task that meets the essential re-
quirements in Section III, and is not limited to this financial
application.

B. Generative Models

We focus our investigation on Generative Adversarial
Networks (GANs) and Tensor Network Born Machines
(TNBMs). This choice is motivated by several reasons. On
the one hand, GANs constitute one of the most popular
and top utilized classical generative models, notwithstand-
ing the challenges that plague their training such as mode
collapse [60], convergence issues [61], and vanishing gradi-
ents [62]. Moreover, they are made up of several compo-
nents that can be independently and successfully promoted to
a quantum model [19], thus paving the way to the study of hy-
brid quantum-classical generative models. On the other hand,
recent results for training TNBM architectures show that such
models are promising candidates to exhibit both validity-
based and quality-based generalization behaviours [24]. We
started our generalization study choosing these two models,
but our approach can be leveraged to characterize any other
state-of-the-art generative model of interest, and we do hope
other interesting works will spin out from this initial proposal
to evaluate quantitatively their generalization power. Future
work can include an analysis of fully quantum models, even
trained on hardware, once current limitations in training large
and deep circuits are overcome.
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1. Generative Adversarial Network (GAN)

Our classical model consists of a Generative Adversarial
Network (GAN) architecture with a normal prior distribution,
and we conduct the training as typically described in the lit-
erature [63–65]. GANs are trained as two neural networks,
a discriminator D and a generator G, competing against one
another for optimal performance in an adversarial game. Sam-
ples from a prior distribution q(z) are fed into the generator’s
input layer, and throughout training the generator attempts to
produce new data x that can fool the discriminator into classi-
fying x as a real rather than an artificially created data point.
The goal of training is to maximize the generator’s score and
minimize the discriminator’s score as described by the loss
function:

LGAN = min
G

max
D

[Ex∼PTrain(x)[logD(x)] (15)

+Ez∼q(z)[log(1−D(G(z)))]].

For both the generator and the discriminator, we utilize a
feed forward architecture with fully connected linear layers
(details are listed in Table IV in Appendix A).

2. Tensor Network Born Machine (TNBM)

Our quantum-inspired generative model is a Tensor Net-
work Born Machine (TNBM), whose underlying architecture
is chosen to be a Matrix Product State (MPS), a well-known
1D tensor network characterized by a low level of entangle-
ment [49]. A TNBM takes unlabelled N -dimensional train-
ing bitstrings from the dataset {xt}Tt=1, and aims to encode the
underlying probability distribution in a quantum wavefunction
ψ, expressing the correlations between samples in the ampli-
tude of a quantum state, namely:

|ψ〉 =
∑
{s}

∑
{α}

As1α1
As2α1α2

...AsNαN
|s1s2...sN 〉. (16)

To motivate this representation, we note that an N -
dimensional bitstring can be interpreted as a possible real-
ization of the spin state (0,1) of N particles |s1s2...sN 〉, and
therefore the full quantum state can be written as a superpo-
sition of all the possible spin states. Rather than using the
exact coefficient matrix to build |ψ〉, we approximate it by the
product of smaller parametrized single-particle matrices Asi ,
where the dimensions {α} are known as bond dimensions.
The summation across α determines the probability amplitude
for each superposition state of individual sites; thus, the bond
dimensions controls the expressivity of the TNBM.

We use a similar training method as described in Ref. [49],
where models are trained via a DMRG-like algorithm with the
log-likelihood cost function:

L(θ) = − 1

T

∑
t

log(pθ(xt)). (17)

During training, samples are generated from the wavefunc-
tion according to the Born Rule:

pθ(xt) = |〈xt|ψ〉|2, (18)

and the goal of the learning process is to find an optimal
TNBM parametrization θ such that pθ(xt)→ PTrain(xt).

A TNBM is known as a quantum-inspired technique as
it builds upon fundamental concepts and formalism of the
quantum-mechanical theory, but it is executed entirely on a
classical platform.

VI. RESULTS AND DISCUSSION

Having defined several quantitative metrics that allow one
to conduct a generalization analysis of generative models from
a practical perspective, we use them to investigate the perfor-
mance of TNBM and GAN architectures. We present the re-
sults of our simulations, whose details are specified in Section
VI A. We demonstrate the robustness of our proposed metrics
(Section VI B), show their ability to spot common pitfalls in
model training (Section VI C), and introduce insights into the
validity-based and quality-based generalization capabilities of
each model (Section VI D).

A. Simulation Details

For our experiments, we consider a specific instance of a
cardinality constrained portfolio optimization task, where we
aim at minimizing the associated risk σ for a given target re-
turn ρ = 0.002, such that the asset universe from which one
can pick to build a new candidate portfolio has size N = 20.
Here, assets are randomly selected from the S&P500 index,
as previously done in Refs. [24, 59], and the return level ρ is
the same as used in previous studies. We impose the cardi-
nality constraint that each portfolio must have a fixed Ham-
ming weight k = N/2 = 10. As previously stated, such
an essential restriction creates a subset of the search space
U , of size 2N ∼ O(106), defining a solution space S of
size

(
N
k

)
∼ O(105). The choice of these values allows for

a big enough space so that generalization capabilities can be
probed.

Given the solution space of portfolio candidates, the data
distribution P (x) given in Eq. (4) used to assess validity-
based generalization is automatically defined. To build a
non-exhaustive PTrain(x) as in Eq. (5), only a fixed number
T = ε|S| of training samples are randomly selected from the
solution space, thus making the task of learning the distribu-
tion P (x) highly non-trivial (despite it being defined as a uni-
form distribution over the valid bitstrings). Specifically, all
generative models are trained for a fixed number of epochs
nepochs = 100 with a fixed value of T that equals 1% of the
solution space (i.e., ε = 0.01) , leaving the remaining 99%
of the space available for testing generalization capabilities.
Several values of this hyperparameter have been investigated,
and we found this particular percentage to be a good choice as



11

it gives the models many chances of generalizing, while pro-
viding enough samples T ∼ O(103) for the learning process
to be successful. In order to assess quality-based generaliza-
tion, we conduct the same process outlined above, with the
addition of a pre-processing step that uses a softmax function
to introduce risk-based information in the training dataset, so
that low-risk portfolios are assigned a higher probability, and
sampled with higher frequency.

We investigate the generalization behaviours of different
versions of the TNBM and GAN architectures, using vari-
ous hyperparameter sets. In the case of the TNBM, we con-
sider different values for the bond dimension α, as this is the
main parameter that affects the model quality. For GANs,
the choice of hyperparameters is significantly more challeng-
ing [66]. Therefore, in addition to identifying hyperparam-
eters via a trial-and-error procedure, we investigate whether
automated hyperparameter optimization using Optuna [67]
could significantly improve the performance. We propose
three different GANs that only differ in their hyperparame-
ters as per Table IV in Appendix A, and show generaliza-
tion behaviours for all of them. From here onward, we refer
to a GAN that has mode collapsed onto one seen and valid
bitstring as GAN-MC and to the Optuna enhanced GAN as
GAN+.

As mentioned above, all models have been trained for a
fixed number of epochs and the associated generalization met-
rics have been computed based on a fixed number Q = 105 of
queries retrieved from the trained model returned after the last
epoch. Other strategies can be employed, such as considering
the set of weights associated to the lowest loss function dur-
ing training, or including more advanced training techniques
such as early stopping. We decided to leverage a simple train-
ing scheme to avoid introducing any training bias and allow
for the fairest comparison of the two models under examina-
tion. We also chose to sample this high magnitude of queries
since this was not a limitation for the problem size consid-
ered here. However, in Appendix D we present the behaviour
of our sample-based metrics as a function of the number of
queries. All of the numerical experiments in this work were
carried out with Orquestra® 2 for workflow and data manage-
ment.

B. Metric Robustness

The first step to validate our approach consists in showing
the robustness of our sample-based metrics. To verify this,
we conduct a statistical analysis of the generalization metrics’
values and investigate the statistical errors associated to them.
In addition, we propose an initial numerical investigation of
the relationship between the values of our sample-based met-
rics and the distance measure from the model’s distribution
to the ground truth data distribution, in order to understand
how the models’ performance benchmarking approach con-
nects with that of computational learning theory.

2 https://www.orquestra.io/
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FIG. 3. Robustness of the generalization metrics. The plot shows
the relative percentage error associated to each of the generalization
metrics proposed in Section IV, listed on the x axis. The errors are
estimated as the relative standard deviation of independent metric
values computed on 30 sets of queries generated by trained TNBM
(pink) and GAN (green) models. The proposed metrics show their
statistical robustness: the associated error is small, suggesting that
our approach is sample-based but not sample-dependent. Hence-
forth, new independent same-size query batches from the trained
model will produce similar metric results.

We focus the robustness analysis on one instance of each
of the two generative models presented in Section V. Specif-
ically, we consider a TNBM model with fixed bond dimen-
sion α = 7, which has proven to be a good choice for gen-
eralization purposes as will be explained in Section VI C. For
GAN, we consider the set of hyperparameters displayed in
the first column of Table IV in Appendix A, which were se-
lected as reasonable values via a trial and error procedure (i.e.,
without leveraging automated hyperparameter optimization).
The analysis can be extended to other instances to further
strengthen the evidence of the robustness of our metrics.

After training these two model instances using gradient-
based optimizers (see Table IV), we perform 30 independent
query retrievals and compute our generalization metrics on
these distinct sample sets. We then evaluate the relative per-
centage error3 associated to each of the metrics to assess their
statistical robustness. For each of the two models, the error
values for both validity-based and quality-based metrics are
shown in Figure 3.

The errors associated to the different metrics assume sim-
ilar values for the TNBM and GAN: this supports our claim
that our metrics are model-agnostic and can be used to eval-
uate generalization capabilities for any generative model of
interest. Furthermore, we can see in Figure 3 that the rela-
tive errors are less than 1%, thus suggesting that our metrics

3 Relative percentage error is defined as the standard deviation of the metric
values over their average.
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show significant robustness when computed on different sets
of queries. Hence, we can affirm that the metrics proposed in
this work are sample-based but not sample-dependent across
different query batches of the same size.

The latter statement requires further clarification in the case
of the coverage metric in Eq. (10). In this case, even though
the coverage does not depend on the set of queries, it does
depend on the number of queries that are retrieved from the
trained model, as suggested in Section IV B. The ideal cov-
erage value of 1 is reached in the limit of a large number of
queries, when the trained model has the opportunity to gener-
ate enough samples to cover most of the solution space. How-
ever, we note that, given a query budget Q, the effective upper
bound UB to the coverage value is set by

UB =
min(Q, |S|)
|S|

≤ 1,

thus implying that the ideal value of 1 can be reached only
with a sufficiently high number of queries, i.e., Q ≥ |S|. We
investigated if the models considered so far show this trend as
we increase the number of queries retrieved after training from
104 to 3 · 106. The results of the simulations are displayed in
Figure 4; in Appendix C we compare them with the baseline
given by random sampling from the search space U . Results
for how the other metrics vary with the number of queries Q
are shown in Appendix D.

The data shows that the TNBM coverage closely resembles
the UB trend for any given value of Q and saturates to the
ideal value of 1 for a large enough number of queries, im-
plying that this model is able to achieve excellent coverage.
Conversely, the GAN coverage is further from the UB and
slowly increases without getting to the desired threshold, thus
suggesting that significantly more queries would need to be
taken to achieve a perfect coverage of all the unseen and valid
patterns. Since there is no guarantee that the desired threshold
is reached with a finite number of queries, this result might
as well indicate that the model is quite poor at generalizing
due to a high number of unreachable patterns. This is partic-
ularly relevant in the case of very large solution spaces S. In
this circumstance, the coverage metric has an intrinsic limita-
tion: its low value might indicate that the number of gener-
ated queries is insufficient (Q << |S| − T ), rather than being
due to poor generalization (|gsol| ≈ 0). Therefore, in order
to mitigate the above issue when evaluating single models in
the case of large problem sizes, we envision the denominator
in C to be replaced by the number of queries Q. This solu-
tion will slightly distort the meaning of coverage in Eq. (10)
to a new metric quantifying the rate at which the model gen-
erates unique unseen and valid samples. When extending to
large problem sizes, we see this as a more relevant evaluation
metric as one cares more about the diversity of unique unseen
and valid samples the model can reach rather than reaching all
of them, which would be impossible without the number of
queries being at least the size of the solution space. However,
as our experiments are conducted with a mid-sized problem
space, we stick to the definition in Eq. (10) for our evaluation.

Even though the coverage metric is dependent on the num-
ber of queries and its interpretation in terms of generalization
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FIG. 4. Coverage trends for increasing number of queries. The
plot displays the behaviours of the coverage metric for both TNBM
(pink) and GAN (green) as we increase the number of queries Q re-
trieved from the trained models. The dashed black line shows the
upper bound UB for each number of queries selected - i.e., the num-
ber of queries selected over the total size of the solution space. In the
case of the TNBM, we observe that the coverage value follows the
UB curve and saturates to the ideal value of 1 for large numbers of
Q, corresponding to the scenario in which the trained model is able
to generate all unseen and valid samples. In the case of the GAN,
we still observe that the coverage value gets closer to UB and the
ideal threshold of 1 when more and more queries are drawn from the
model. However, it remains further from UB and never reaches the
desired threshold, suggesting that our GAN requires more queries
than the TNBM to be able to reach all the unseen samples in the
solution space.

is affected by the size of the solution space, we can draw a
fair comparison between the coverage of different models. In-
deed, we can compare TNBM and GAN models if we keep
the number of queries generated from each fixed, as reported
in Section VI D, where it will be shown that the quantum-
inspired model outperforms this GAN model when given the
same sample budget.

Lastly, we put forth an initial investigation on the correla-
tion between our metrics and the model’s ability to infer the
ground truth, as is the goal in computational learning theory
discussed in Section I. In Table I, we report the average val-
ues of (F,R,C) that result from five independent trainings
of TNBMs with α = 7. To take into account the fact that
we span over a few ε values, we also show a normalized ver-
sion of the rate value, given by R̃ = R/(1 − ε). Alongside
the (F,R,C) values, we record two versions of the KL diver-
gence: the quantity KLTrain, computed as usual between the
model’s output distribution and the training distribution in Eq.
(5), and the quantity KLTarget, computed between the model’s
output distribution and the uniform ground truth data distribu-
tion in Eq. (4). Note that the latter is not usually available in
real-world scenarios, since the ground truth is unknown; how-
ever, we find it relevant to analyze this quantity to validate
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our practical approach to generalization by relating it to com-
putational learning theory. We see that with access to very
little data (ε = 0.01), the model yields high (F,R,C) val-
ues and gets closer to the data distribution than the training
distribution - as KLTarget < KLTrain. When we increase ε to
half of the solution space, we see that the (F,R,C) metrics
increase and the model is also able to approximate the ground
truth more closely, since KLTarget decreases. Hence, we see
a promising correlation between our metrics’ values and the
model’s ability to infer the ground truth in both of these data
regimes.

The main discrepancy between the two approaches occurs
when the model is provided all of the data during training
(ε = 1). In this case that, we see that KLTarget = KLTrain,
and thus there is no room for generalization to occur, as de-
fined in Section II. Therefore, the metrics’ values are either
zero or undefined (nan) in this instance. Despite this, we
still see that the model is able to learn the ground truth well,
as indicated by a low KL value. The ability to assess this
memorization behaviour is the main distinction between our
practical approach in evaluating generalization and the one
utilized in computational learning theory. From a practical
standpoint, being able to identify this behaviour is highly rel-
evant, thus supporting the need for a more practical approach
to generalization to be considered in parallel to the theoretical
one. In Appendix E, we show multiple plots that report our
metrics’ values throughout the entire training alongside the
KLTrain,KLTarget values for a more complete analysis. Re-
markably, the different panels in Figure 18 demonstrate ex-
cellent correlations between the theoretical and practical ap-
proaches, while also highlighting the value of having a multi-
dimensional evaluation perspective, which provides enhanced
explainability when assessing strengths and weaknesses of
generative models. We note that while this example indicates
a good correlation between our metrics’ values and the ground
truth inference ability, more investigations are necessary to
strengthen the understanding of this relationship, potentially
including theoretical proofs that establish precise connections
between the two approaches.

C. Spotting Pitfalls in Generative Model Training

We further demonstrate that we can use our metrics to de-
tect common pitfalls that are known to affect the training of
the TNBM and GAN models. This result strengthens the va-
lidity of our approach, which turns out not only to be a good
framework for quantifying generalization of generative mod-
els, but also to enhance the study of their trainability. In the
following sections, we show an example of this study for each
of the models. For the TNBM, we analyze the relation be-
tween the bond dimension α, our generalization metrics, and
the trainability of the model. Conversely, for the GAN, we in-
vestigate the relation between our metrics and mode collapse.
Additional results to compare the training stability of the two
classes of models are shown in Figure 17 in Appendix A.

Metric ε = 0.01 ε = 0.5 ε = 1.0

F 0.979(0.38%) 0.986(0.06%) 0.0

R 0.969(0.39%) 0.497(0.28%) 0.0

R̃ 0.979(0.39%) 0.993(0.28%) nan

C 0.405(0.52%) 0.416(0.32%) nan

KLTrain 4.575(0.07%) 0.702(0.01%) 0.009(0.36%)

KLTarget 0.074(13.28%) 0.009(0.56%) 0.009(0.36%)

TABLE I. The relationship between the validity-based metrics
and learning the ground truth for the TNBM. Down each column,
we record the final average (F,R,C) metrics’ values (including the
normalized rate R̃) along with the average KL divergences of the
model output distribution relative to the training distribution, denoted
as KLTrain, and to the data distribution, denoted as KLTarget. We see
that there is a good correlation between the high-scoring metrics’
values and learning the ground truth distribution, even in multiple
data regimes. We see that the largest discrepancy between the two
frameworks exists when ε = 1, where KLTarget = KLTrain reaches a
low value, but the other metrics are either zero or undefined. This is a
case of memorization, where the model still scores high in the context
of learning the ground truth, while demonstrating poor performance
from a practical generalization standpoint. This is expected from a
practical perspective: the generative model cannot add value in terms
of generating novel samples, since all of them were given as part of
the training set. All relative percentages errors are computed across
five independent trainings.

1. TNBM Bond Dimension and Trainability

In the TNBM architecture, the bond dimension α of the
MPS plays an important role in the model’s ability to gener-
ate good quality samples as it is directly correlated with the
expressive power of the model. Typically, increasing the bond
dimension leads to a better model approximation. We take
this one step further and directly connect bond dimension to
the model’s generalization behaviour and trainability.

In light of this goal, we train five different instances of the
TNBM architecture on a fixed training dataset with various
bond dimensions α ∈ {3, 5, 7, 9, 11}. For a given α value,
we select a typical4 training and build a model with the last
set of parameters retrieved after the learning process. We
then generate 15 independent query batches from the trained
model and compute our validity-based generalization metrics
(F,R,C). We show the results in Figure 5, where we dis-
play the average metric evaluations for each bond dimension
α. In the plot legend, we report the last loss function value
during training (complete training loss curves can be found in
Appendix A).

From Figure 5, it can be seen that the median value of the
KL divergence occurs for α = 7: this result motivates the

4 A typical training instance is identified as the resulting model from the
median value of the loss function (i.e., KL divergence) at the last epoch,
out of 30 independent trainings.
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FIG. 5. Training and generalization behaviours of the TNBM
with different bond dimensions. The plot displays the 3D evalu-
ation of the validity-based generalization capabilities of the TNBM
models with various α ∈ {3, 5, 7, 9, 11}. Each data point corre-
sponds to the average metrics’ values, whose associated error is too
small to be visible on the plot. The legend connects each α to the
last KL divergence value in the training after 100 epochs. The plot
demonstrates that for various α values, there is a connection between
KL divergence values of the model distribution to the training distri-
bution, thus establishing a link between this capability and trainabil-
ity properties of generative models.

usage of such value in Section VI B, as it suggests that the
training is most typical for this choice of the hyperparame-
ter value. It is not surprising that the lowest value of the loss
function, obtained for α = 5, does not correspond to the best
validity-based generalization performance, as shown in Figure
5, because this loss is relative to the training rather than the
data distribution. If the model was to perfectly fit the training
distribution, we would see data-copying rather than general-
ization behavior - which is a form of overfitting. We expect
that our metrics will be able to identify similar overfitting be-
haviours when associated to an extremely successful training
curve (Table V).

As the bond dimension grows, we see an increase in
(F,R,C) up to α = 7, and then the metrics’ values begin
to decrease. Thus, it seems that we are hitting a trainability
Goldilocks region around α ≈ 7, with α < 7 leading to un-
derperforming models and α > 7 being too expressive for
the model to be able to generalize successfully. These results
demonstrate that we can use our metrics to identify thresholds
in hyperparameter tuning and to get insights on the trainability
of the model as it relates to generalization.

2. Mode collapse in GAN

One of the major issues that affects GAN training is the
so-called mode collapse behaviour [60]. This undesired phe-
nomenon occurs when the generator learns to produce a very
limited number (sometimes only one) of highly plausible out-
puts, thus affecting the ability of the generative model to fur-
ther explore the solution space. Since mode collapse is a well-
known pitfall, several strategies have been proposed to miti-
gate this issue in the context of GANs, among which a promis-
ing algorithm is the Wasserstein GAN [68, 69].

We propose an example of how our metrics are able to de-
tect mode collapse, when it occurs. We fine tune our hyperpa-
rameters such that the GAN exhibits mode collapse behaviour
(see details in Table IV in Appendix A) for a fixed training
dataset. We run a typical5 training of this GAN-MC architec-
ture, and then sample 15 query batches from the trained model
to compute our generalization metrics (F,R,C).

We display the validity-based metrics for the GAN and
GAN-MC in Table II. For the GAN-MC, we see that fidelity
and rate are the ideal value of 1, thus suggesting that the model
generates exclusively unseen samples with the desired cardi-
nality. However, the coverage value is close to 0, thus it is
far from its ideal threshold, since the model is only able to
produce one single pattern and does not have the ability to ex-
plore the solution space and cover it as much as possible. Such
anomaly in the validity-based generalization metrics’ values is
not present if the training of a GAN doesn’t exhibit training
pitfalls, as displayed by the GAN results in the same table.

We note that these metrics’ values only capture mode col-
lapse behaviour for models that collapse onto an unseen and
valid bitstring. If the model were to collapse onto a seen
bitstring (in-training mode collapse), F would be not well-
defined and both C and R would equal zero. These metrics’
values would be indistinguishable from the perfect memoriza-
tion regime. In order to avoid this, one should also compare
the number of individual queries generated, |dgen|, to the size
of the training set T . This would provide the additional infor-
mation necessary to detect any form of mode collapse. Ex-
pected metrics’ values for various mode collapse behaviours
along with other model training pitfalls are displayed in Table
V in Appendix B. In summary, our metrics reflect mode col-
lapse upon occurrence and therefore they can provide insights
on the training progress of generative models.

In order to better visualize the difference between the two
aforementioned models and detect the mode collapse phe-
nomenon, in Figure 6a we display the cardinality distribution
of the generated queries for the two GAN variants under ex-
amination: for GAN, the distribution is centered around the
correct cardinality but shows a larger spread as compared to

5 A typical training instance is identified among 30 independent trainings as
the one whose mode collapse shows the correct cardinality and whose last
associated Hausdorff distance [70] during training is the median. We high-
light that the training is performed via an adversarial strategy, hence we use
the Hausdorff distance only as a figure of merit to monitor the training.
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FIG. 6. Visualization of mode collapse in GAN training. Figure 6a shows the cardinality distribution of generated queries for GAN and
GAN-MC, indicating that GAN-MC produces only samples with the desired cardinality (dashed line), whereas the GAN queries populate a
larger subset of the cardinality domain. Hence, GAN-MC is associated to perfect fidelity F = 1 and rate R = 1. However, in Figure 6b
the queries’ diversity is displayed, where the x axis represents the set of distinct generated bitstrings (for readability, bitstrings labels are not
shown, and only bitstrings with counts > 50 have been included in the histogram). We can see that GAN-MC always generates the same
unseen and valid query (mode collapse phenomenon), as opposed to GAN, which is able to cover a significantly larger portion of the solution
space, as reflected by the metrics’ value in Table II. Note the different scales for the y axes in both Figure 6a and Figure 6b.

the case of GAN-MC, where all the queries satisfy the cardi-
nality constraint. Nevertheless, Figure 6b allows one to iden-
tify the occurrence of mode collapse onto an unseen and valid
bitstring: the GAN-MC model generates always the same
query, as opposed to the diversity of samples retrieved from
GAN.

These results demonstrate that we can use our metrics to
identify the occurrence of a very well-known pitfall affect-
ing the learning process of GANs, thus providing an insight-
ful tool for the challenging task of monitoring the training of
generative models.

D. Evaluating and Comparing Models

We use our quantitative metric-based approach to evaluate
the validity-based and quality-based generalization capabili-
ties across different generative models and compare their per-
formance.

We run 30 independent trainings for a fixed training dataset
and choose the best run, which we define as the run with the
lowest loss function at the end of the trainings. Then, we gen-
erate 15 query batches from such trained model, for each of
the generative models under examination. We note that while
we use a fixed training dataset to compare models, this evalua-
tion method holds across multiple training datasets that could
be selected from a specific problem instance. Indeed, each
dataset is characterized by the same asset universe, cardinal-
ity, and seen portion ε, but different datasets can be built by

simply uniformly drawing independent bitstring subsets from
the support of P (x). We perform this analysis in Appendix D,
showing that validity-based and quality-based generalization
metrics for 15 different training datasets display similar val-
ues, thus showcasing the robustness of the models’ behaviour,
and the conclusions shown in this work.

For validity-based generalization, we construct DTrain by
sampling from a P (x) that is uniform over the solution space
of cardinality-constrained bitstrings, whereas for quality-
based generalization, DTrain is re-weighted with cost-related
information, i.e., from P (w)

Train(x), as in Eq. (6). As stated pre-
viously, we use one fixed dataset for our evaluation in Section
VI D 1 and Section VI D 2. Post training, Q = 105 queries are
collected from each model for comparison.

1. Validity-Based Generalization

We first show the validity-based generalization results for
each type of model. While we present these results as both an
evaluation and comparison of models, we would like to em-
phasize that our results do not speak for all GAN or TNBM
models, as each type of model may contain various hyper-
parameters, multi-layered architectures, and other variances
that would lead to different results. Thus, we restrict our
comparison to the specific models we trained, as described
in Section V with GAN hyperparameters listed in Table IV
(Appendix A). We choose to focus on using these models
to demonstrate the robustness of our framework and metrics,



16

such that when exploring various GAN, TNBM, or alternative
model architectures, this approach can be replicated.

Results for (F,R,C) are listed in Table II, along with the
values of the exploration E; the corresponding results for the
metrics’ baseline given by random sampling from the search
space are reported in Appendix C. Additionally, we visualize
the average validity-based metrics in Figure 7 through a 3D
representation. Lastly, Figure 15 in Appendix E gives an intu-
ition of how the two models perform and allows to visualize
their different abilities in reconstructing the data distribution
P (x), showing the remarkable performance of the TNBM as
reflected in the metrics’ values.

Metric TNBM GAN GAN-MC GAN+
E 0.989(0.02%) 0.995(0.02%) 1.0 1.0(0.003%)

F 0.989(0.03%) 0.263(0.6%) 1.0 0.243(0.4%)

R 0.978(0.03%) 0.261(0.6%) 1.0 0.243(0.4%)

C 0.409(0.15%) 0.006(1.7%) 5.5 · 10−6 0.001(2.5%)

C/C 0.971 0.014 1.0 · 10−5 0.002

TABLE II. Pre-Generalization and validity-based generalization
metrics for all models. We display the average exploration E and
the average (F,R,C) values for each best model run with an average
and the associated relative percentage error across 15 query batches.
All the models exhibit a high exploration rate, thus showing that data-
copying is not occurring. We see that our TNBM model outperforms
our GAN and GAN+ models by more than 70 percentage points for
F and R. C is about 68x larger for TNBM than the GAN models.
We further include the ratio of the coverage C to the ideal expected
coverage C to highlight the large difference between the TNBM and
the GAN’s ability to successfully learn the underlying data distribu-
tion P (x). Additionally, for GAN-MC, we see perfect F and R and
a near zero C value, indicating mode collapse behaviour. Note that
no error is provided for the GAN-MC as all the models produce ex-
actly the same values for the metric, except for the coverage whose
associated error is negligible.

In evaluating our models, we see that the TNBM is a clear
winner with average values (0.989, 0.978, 0.409). The model
achieves near-perfect rate and fidelity. As the maximum cov-
erage one can achieve is the number of queries over the size
of the solution space (UB = 0.54), the TNBM performs re-
markably well. Indeed, the ratio of the average coverage to the
upper bound UB for the TNBM is high, i.e. C/UB = 76%.
However, we note that the upper bound represents a scenario
that would rarely happen in practice, thus representing a pes-
simistic reference value. A more realistic reference can be
derived if one considers the ideal expected coverage C when
sampling from the data distribution P (x). By means of simple
statistical considerations (see e.g., [71, 72]), it can be shown
that

C = 1− (1− 1

|S| − T
)Q,

and this estimator indicates which coverage C one should ex-
pect when the generative model has perfectly learned the data
distribution and generates samples accordingly. When com-
paring the average TNBM coverage to this more realistic ref-
erence value, we obtain a surprisingly high value of 97%,

which shows that the model has learned an extremely good
approximation of the data distribution P (x). In Table II, we
include C/C values for all models in order to highlight how
well each model’s average coverage compares to the ideal ex-
pected coverage. The limit of C/C → 1.0 holds for models
with perfect generalization.

As shown in Figure 4, the TNBM is able to achieve an im-
proved coverage when sampling up to 3 million queries. The
model has a high exploration rate of 98.9%, i.e. E = 0.989,
such that most of the generated samples were not fed to the
model during training. The GAN has much poorer average
(F,R,C) values with a slightly higher exploration rate than
the TNBM, thus showing that neither of them is perform-
ing mere data-copying. The GAN achieves metric values
(0.263, 0.261, 0.006), but 99.5% of its generated samples are
outside of the training set. One can conclude that while the
GAN has the potential to produce novel samples, it requires
improved optimization strategies in order to avoid generating
noisy samples - i.e. samples that do not match the cardinality
constraint - so that fidelity and rate can grow to larger values.
The GAN is not able to learn the underlying features as well as
the TNBM, and thus is not able to generalize as well. Lastly,
we compute the TNBM-to-GAN ratios for the validity-based
metrics, and see that the TNBM is (3.76, 3.75, 68.2)× bet-
ter than the GAN, respectively across (F,R,C) values. We
would like to highlight that using metric ratios, rather than
absolute values, allows one to have a clearer picture of the re-
lation between different models, and this strategy is especially
useful when considering the coverage, whose absolute value
has been shown to be more heavily affected by the number of
collected queries Q.

As explained in Section VI C 2, we further show visually
that our metrics detect mode collapse in GANs. The GAN-
MC has an exploration rate of 100% (E = 1), demonstrat-
ing that the single generated sample was not introduced in the
training set. Without the prior knowledge that the model ex-
hibits mode collapse, we can use the average (F,R,C) values
(1.0, 1.0, 5.5e-6) to detect this behaviour. If perfect fidelity
and rate are achieved, with a coverage near zero, we can con-
clude that the model has focused in too closely on one or a
few unseen and valid bitstrings. In general, whenever C → 0
we can safely identify the behaviour as mode collapse.

Then, we consider the (F,R,C) values of the GAN+ and
see that while the GAN+ is able to explore slightly more
than the GAN, the (F,R,C) values are very similar, namely
(0.243, 0.243, 0.001), showing that the optimization scheme
with Optuna doesn’t bring a significant improvement for our
specific GAN model in terms of generalization.

Lastly, we note that F and R are highly correlated for each
trained model. This is the case only because in all of the mod-
els studied here the exploration E is quite high (E ≈ 1). In
this limit, and given that R = EF , then we have R ≈ F . It is
important to note that there is no reason to expect a value of
E to be similar across all models, as it happened for the GAN
and TNBM explored here.
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FIG. 7. 3D evaluation of validity-based generalization metrics
for different generative models. The plot displays results for four
models, namely the TNBM with α = 7 (pink), GAN (light green),
GAN-MC (medium green) and GAN+ (dark green). The solid points
show the average (F,R,C) values across 15 query batches, whose
associated error is too small to be visible in the plot. We see that our
TNBM is the clear winner compared to our GAN models.

2. Quality-Based Generalization

We evaluate our generative models’ ability to generate high
quality samples using our quality-based approach and metrics.
The models (TNBM and GAN) are evaluated across the two
sample quality metrics described in Section IV C: Minimum
Value (MV ) and Utility (U ). Note that for calculating the
MV , as discussed in Section IV C, five batches of Q = 105

queries were used. Hence, the total number of query retrievals
used to compute this metric is 5× the number of query sets
one would desire for gathering statistics (in our case, 15 ×
5 = 75 query sets, but this can be adjusted according to the
available sampling budget).

When averaged over the 15 independent query retrievals,
both the TNBM and the GAN meet the conditions in Eq. (11)
and in Eq. (12), as shown in Table III.

We see that our TNBM exhibits a lower MV than our
GAN, even though both beat the training set on average. Thus,
our TNBM model shows slightly enhanced performance when
searching for a minimum value of the cost function c(x),
which is assumed to be the financial risk σ(x) in the specific
application we are considering. While this may be relevant
when one aims at finding the lowest possible minimum in an
optimization task, it may not be the most important condition
for alternative tasks that are simply looking for multiple low
cost options - not necessarily the lowest. For example, when
looking for a large frequency of low cost samples, the condi-
tion in Eq. (12) may be more important and robust for com-
paring models. Note that the value of the utility threshold pa-

Metric TNBM GAN Threshold
MV 0.1017(0.01%) 0.1024(0.17%) 0.1035

U 0.1049(0.017%) 0.1048(0.02%) 0.1059

TABLE III. Quality-based generalization metrics for TNBM and
GAN models. The first column shows values obtained by averaging
over all 15 query retrievals for the TNBM’s sample quality perfor-
mance, along with the associated relative percentage error. The sec-
ond column displays the metrics’ values and relative percentage error
for the GAN model. The last column displays the training threshold,
defined as the MV and U computed for the samples in DTrain. We
see that both the TNBM and the GAN meet the conditions in Eq.
(11) and Eq. (12).

rameter t can be set according to the task at hand. In our task,
we take t = 5% as an appropriate threshold for demonstrat-
ing the model’s ability to obtain the tail-end of the distribution
over low-risk samples.
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FIG. 8. Visualization of quality-based metrics for TNBM-
generated queries. The plot displays the number of portfolio counts
associated to given risk values. The pink spikes represent valid
TNBM queries, whereas the gray spikes represent the samples from
the training set. Note that for calculating our metrics, we used
Q = 105 queries, but the training distribution only contains O(103)
samples. We normalize the counts on the y axis to provide a fair vi-
sual comparison between distributions, and we set the utility thresh-
old to t = 5%. Because the training distribution is re-weighted to
favor lower risk values, the model distribution learns this feature in
the dataset, and generates an even higher frequency of low risk val-
ues. The model queries have a lower utility (pink dashed) than the
training set (black dashed), and the model is able to produce samples
that have lower risks than those in the training set. We see that our
TNBM model is able to effectively generalize to low-risk samples.

From Table III, we observe that the GAN and the TNBM
have practically the same U , despite having such a large dif-
ference in (F,R,C) values. We conclude that while both
models generate new portfolios that happen to be similarly
low in risk when taking the smallest 5% of unseen and valid
portfolio risks, the TNBM is simply able to generate more of
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them than the GAN (TNBM: 4556, GAN: 843, i.e., 5.4×). We
display these utility samples for TNBM in Figure 8, demon-
strating the comparison of U relative to the training distribu-
tion PTrain. We include the same figure for the GAN in Ap-
pendix E.

Hence, the GAN is able to generalize to similarly low risk
portfolios as the TNBM, but fewer in number and less diverse
than those of the TNBM. Our (F,R,C) metrics support that
this generalization diversity is one of the largest differences
between our TNBM and our GAN. Therefore, our TNBM
model achieves superior performance when looking to pro-
duce a large diversified batch of new low-risk valid portfo-
lios. We note that it remains an open question as to why the
TNBM’s performance is of such high quality. Investigating
the nature of the model’s inductive bias remains an ongoing
research effort and opens an interesting opportunity to un-
derstand the power of quantum and quantum-inspired model
when compared to their classical counterparts.

Lastly, we calculate the number of unique portfolios each
model is able to produce that have a lower associated risk than
a critical cost in the training set c′(x). When this critical value
is equivalent to the sample with the lowest risk in the training
set, our TNBM on average is able to beat our GAN with a 61:4
ratio. In other words, our TNBM model is able to generalize
to 61 unique portfolios that have a lower risk than the lowest
risk in the training set, while the GAN can only produce 4
(i.e., ∼ 15×). We introduce this condition in Eq. (13) on top
of the other two metrics in order to have an additional layer
to determine whether a model is suitable for generalization.
Note that one could adjust this critical cost threshold c′(x) to
relax the restriction. For example, when c′(x) is equivalent
to the risk taken at cutoff of the lowest 5% of samples in the
training set, the TNBM-to-GAN ratio becomes 6709:345 on
average (i.e., ∼ 19×).

While the model might meet the sample quality require-
ments Eq. (11) and Eq. (12), it might be poor at finding
many samples with lower cost than c′(x), which is not ideal
when one is not only concerned with the global minimum,
but also with generating a large quantity of low-cost samples.
Our GAN works well under these requirements. On the other
hand, our TNBM model shows good quality performance for
generalizing to both valid and quality-based portfolios with
high diversity and frequency.

SUMMARY AND OUTLOOK

In this work, we study the generalization performance of
generative models in the context of measuring practical quan-
tum advantage. We highlight that developing new approaches
and frameworks to characterize the generalization capabilities
of unsupervised generative models is still an ongoing research
area in both the classical and quantum machine learning com-
munity [31, 33, 41, 43, 44]. Thus, we first unify nomencla-
ture for discussing practical generalization in generative mod-
els, clarifying our standpoint as compared to computational
learning theory, next introduce a novel quantitative framework
with metrics for identifying various behaviours with discrete

datasets, and, finally, demonstrate the robustness of our ap-
proach by evaluating and comparing the generalization capa-
bilities of two well-known generative models: classical GANs
and quantum-inspired TNBMs. We highlight that the main
goal of our work is to provide this fundamental tool that can be
applied to a very difficult, open challenge in the field of quan-
tum machine learning: a robust framework to assess classical
and quantum generative models on the same ground. Addi-
tionally, to the best of our knowledge, this is the first work
that quantitatively compares classical and quantum-inspired
models for their generalization capabilities from a practical
perspective.

In future work, we are looking to use this approach to eval-
uate and compare the practical generalization capabilities of
alternative models. We see the value in further optimizing
the hyperparameters of the GAN architecture, and potentially
consider different types of networks such as Recurrent Neu-
ral Networks (RNNs) and Variational Autoencoders (VAEs),
to push their generalization capabilities. As our framework
is tailored towards discrete datasets, we are looking to use
this approach in the near future on hybrid and fully quan-
tum generative architectures as well. Previously, it has been
a challenge to develop frameworks that can detect generaliza-
tion in quantum circuits as we are capped with training small-
depth circuits [73]. With new meta-learning techniques [74–
76] among other pre-training and initialization strategies [77],
one may be able to train larger quantum circuits and use our
approach to evaluate generalization. Additionally, demon-
strating generalization capabilities on real quantum hardware
would open up interesting questions as to how noise may
impact the generalization capabilities of the quantum circuit
models. Lastly, we can use this framework as a fair compari-
son between quantum models and their classical counterparts
and we can look into further applications where generalization
can deliver commercial value.

In summary, the most prominent contribution of this work
is to introduce and use a framework to unambiguously de-
fine and demonstrate generalization-based practical quantum
advantage in the generative modeling domain. Generaliza-
tion is the gold standard for measuring the quality of a ma-
chine learning model. With generative modeling having an
edge over supervised models in the race for quantum advan-
tage [11], we hope this work opens the possibility to start this
race on a solid ground, and on datasets with commercial rele-
vance [27]. As shown here, training GANs and other state-of-
the-art classical generative models can be challenging to the
point that we report a superior performance from the quantum-
inspired generative models used here. Although we expect po-
tentially better results from other classical proposals, there is
room as well to improve the quantum-inspired versions ex-
plored here. There are also exciting possibilities expected
from purely quantum generative models such as Quantum Cir-
cuit Born Machines [78], as we will be exploring in future
work. We hope this work incites both quantum and classical
ML experts to use this framework to enhance the performance
and design of their models, in this now quantitative race to-
wards demonstrating practical quantum advantage in genera-
tive modeling.
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Appendix A: Training Details

Here, we provide additional details on the training process
for both the quantum-inspired and the classical model. The
TNBM, whose underlying architecture is an MPS, is trained
with a DMRG approach [49] with the negative log-likelihood
cost function Eq. (16), and the optimization is performed via
Stochastic Gradient Descent with learning rate η = 1e-2. The
number of parameters for the worst case in the TNBM is 1864
for our specific model of α = 7. As the bond dimensions

FIG. 9. TNBM training curves for different bond dimensions. We
plot the KL divergence to monitor the training of the TNBM for bond
dimensions α ∈ {3, 5, 7, 9, 11}. The typical KL value is achieved
for α = 7 after 100 epochs, thus motivating our choice to utilize this
value for further studies and model comparisons. The inset provides
a more detailed view of the loss curves ordering.

for each site are adjusted throughout training, we see that the
TNBM does not reach the worst case, and instead has a total
number of 1152 parameters. The total number of parameters
can be calculated by summing over the squared bond dimen-
sions at each site, and multiplying by a factor of 2.

In Figure 9, we show the training curves for TNBM with
several values of the bond dimension α, reporting the KL di-
vergence at each training epoch, that complete the data pre-
sented in Section VI C 1. Once more, we stress that we can
detect trainability issues with our metrics that are confirmed
by the learning curves trends. However, if we consider mod-
els that are successfully trained, we expect that our metrics
should be able to detect the overfitting and underfitting regime
when varying the hyperparameters (e.g. the bond dimension
α which controls the TNBM expressivity).

In the case of the GAN, the architecture is set to be a feed-
forward neural network with linear layers. The generator uses
a Gaussian prior, ReLU activation function in the hidden lay-
ers and sigmoid cost function in the output layer. The discrim-
inator uses Leaky ReLU activation function in all layers, along
with a dropout operation before the final layer. The optimiza-
tion is performed via the Adam algorithm [79]. The values of
the hyperparameters are shown in Table IV. The number of to-
tal parameters in the GAN is the sum of the parameters in the
discriminator and the generator. For our specific architecture,
the number of parameters is computed in each layer for the
discriminator and generator, respectively. For our GAN with
1 hidden layer, we have a total of 4181 parameters.
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Hyperparameter GAN GAN-MC GAN+
Prior Size 20 8 12

Hidden Size (G) 20 6 6

Number of Layers (G) 1 4 1

Learning Rate (G) 0.02 0.051 0.001

Hidden Size (D) 20 9 9

Number of Layers (D) 1 3 1

Learning Rate (D) 0.02 0.008 0.006

Negative Slope (D) 0.02 0.007 0.010

Dropout (D) 10−5 0.024 0.107

Batch Size 50 71 56

TABLE IV. GAN hyperparameter values. The values labelled with
G(D) refer to the generator(discriminator). The hidden size indicates
the number of nodes in each hidden layer within G and D, approxi-
mated to the same significant digit.

Appendix B: Metrics and Model Behaviours

We provide a short guide to what one could expect to
see in our metric values E and (F,R,C) when a model ex-
hibits various training behaviours. This ‘cheat sheet’ can be
used to quickly check whether the model is perfectly overfit-
ting/memorizing, perfectly generalizing, exhibiting mode col-
lapse in different nuances, or generating too many novel but
noisy samples (i.e., anomalous generalization).

Model Behaviour E (F, R, C) Extra Check
Perfect Generalization 1 (1, 1, 1) N/A

Perfect Memorization 0 (null, 0, 0) |dgen| ∼ T
Anomalous Pre-Generalization ∼ 1 (0, 0, 0) |dgen| ∼ T
MC (unseen and valid) ∼ 1 (1, 1,∼ 0) N/A

MC (unseen and invalid) ∼ 1 (0, 0, 0) |dgen| << T

MC (seen and (in)valid) 0 (null, 0, 0) |dgen| << T

TABLE V. Metrics’ values across various model behaviours. The
table displays the E and (F,R,C) values one obtains across differ-
ent model behaviours such as perfect generalization, perfect mem-
orization/overfitting, generating predominantly noise referred to as
anomalous pre-generalization, and mode collapsing (MC) on various
bitstring types. We see that F will be null in the cases where the
number of unseen generated samples is zero. Additionally, we pro-
vide an extra check allowing to distinguish between cases in which
the generalization metrics yield the same results.

Appendix C: Random sampling as metrics’ baseline

To better characterize the performance of the generative
models under examination, we compare their generalization
capabilities to a simple baseline: we sample randomly from
the search space U , thus collecting queries to compute the
validity metrics, and we compare the results to the ones as-
sociated to the TNBM and the GAN. The metrics’ values are

summarized in Table VI: as expected, both generative mod-
els perform better than random sampling, which suggests that
during the training process the models were indeed able to
learn successfully, despite having different degrees of suc-
cess. However, the coverage metric in the case of random
sampling seems to be higher than the GAN, and this trend per-
sists even considering different numbers of queries Q. What
motivates this behaviour is the fact that the GAN suffers from
mode collapse: its limited diversity impacts the coverage val-
ues, whereas the performance of random sampling is favoured
by its higher diversity capabilities. However, Figure 10 shows
that the GAN (Figure 10a) is able to generate more samples in
the valid space or its vicinity than the random sampler (Fig-
ure 10b), thus explaining the higher fidelity of the former as
opposed to the latter.

Metric TNBM GAN Random
E 0.989(0.02%) 0.995(0.02%) 0.998(0.013%)

F 0.989(0.03%) 0.263(0.6%) 0.17(0.50%)

R 0.978(0.03%) 0.261(0.6%) 0.17(0.50%)

C 0.409(0.15%) 0.006(1.7%) 0.09(0.48%)

TABLE VI. Pre-generalization and validity-based generalization
metrics. We display the average exploration E and the average
(F,R,C) values for each best model run with an average and the as-
sociated relative percentage error across 15 query batches. Both the
TNBM and the GAN achieve better performance than the random
sampler for all the different metrics, except for the GAN coverage as
pointed out in the main text.
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FIG. 10. Cardinality distribution for GAN and random sampler.
The plots show the percentage of queries with different cardinalities
generated by the GAN (Figure 10a) and by the random sampler (Fig-
ure 10b). We notice that the GAN is able to produce a higher number
of queries with the correct cardinality k = 10 (or its vicinity), thus
showing that the training process allowed the GAN to partially learn
the validity pattern in the training dataset. The black line represents
the probability to draw a query with a given cardinality when ran-
domly sampling from the search space U .
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Appendix D: Metrics’ Trends

To further demonstrate the power and stability of our met-
rics, we provide additional details regarding how they scale as
we vary the number of queries Q generated from the trained
model. Specifically, in Figures 11-14, we plot the values of the
validity-based and quality-based generalization metrics and
show that most of them do not change with the number of
queries - except for coverage, as already shown in Figure 4,
and for the minimum value that is displayed in Figure 13. The
validity-based trend plots display the constant behaviour of
the metrics for both TNBM and GAN as Q increases, along
with a dashed black line indicating the ideal metrics value of 1.
The quality-based trend plots display the constant behaviour
of the utility metric for both TNBM and GAN as Q increases,
and a decreasing behaviour for the minimum value as Q in-
creases. The latter is the expected trend: with more queries
one has a higher probability of reaching a sample with a lower
cost value. For both of these plots, we include a dashed black
line indicating the training threshold. This data supports our
claim that while our metrics are sample-based, most of them
are not dependent on the number of queries.
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FIG. 11. Fidelity trends for increasing number of queries. The
plot displays the constant behaviour of the fidelity F for both TNBM
(pink) and GAN (green) as we increase the number of queries Q
retrieved from the trained models. The dashed black line shows the
ideal metric value of 1. In both models, the fidelity is independent of
the number of generated queries.
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FIG. 12. Rate trends for increasing number of queries. The plot
displays the constant behaviour of the rate R for both TNBM (pink)
and GAN (green) as we increase the number of queries Q retrieved
from the trained models. The dashed black line shows the ideal met-
ric value of 1. In both models, the R is independent of the number of
generated queries.
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FIG. 14. Utility trends for increasing number of queries. The
plot displays the constant behaviour of the utility U for both TNBM
(pink) and GAN (green) as we increase the number of queries Q
retrieved from the trained models. The dashed black line shows the
threshold value of the training set U . Both the GAN and TNBM
remain under the threshold, independent of the number of queries.

We further propose an investigation on the stability of our
approach across various training datasetsDTrain. Since a train-
ing dataset contains a subset of samples of size T drawn from
the solution space S, it is possible to build different datasets
from the same problem instance by randomizing this samples-
drawing procedure.

We present the raw data of each of our metrics obtained
using 10 distinct datasets built from the same fixed problem
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FIG. 13. Minimum Value (MV ) trends for increasing number
of queries. The plot displays the decreasing behaviour of the MV
metric for both TNBM (pink) and GAN (green) as we increase the
number of queries Q retrieved from the trained models. The dashed
black line shows the minimum value of the training set MV . Note
that both models not only produce unseen valid samples, but also
samples with better quality than those in the training set. As we
increase Q, both models are more likely to produce a query with a
lower cost value, even if the GAN requires more samples than the
TNBM to dip under the threshold.

instance. Thus, all the datasets share the same asset uni-
verse, cardinality, and seen portion ε as stated in Section VI A,
and they simply differ for the training bitstrings that get sam-
pled from P (x). Tables VII-D show the results we obtained
for the different pre-generalization condition, validity-based
and value-based generalization metrics across the 10 different
datasets, where each line corresponds to one dataset. We see
that the TNBM beats the GAN for all (F,R,C) values. The
relative percentage errors across the datasets for (F,R,C)
values are smaller for the TNBM (0.5%, 0.5%, 0.5%) than
the GAN (13%, 13%, 30%), demonstrating that the TNBM
produces more stable results across datasets. However, both
standard deviations are small enough to show that our metrics
produce similar results across various training data.

For the quality-based metrics, we see that the MV for the
TNBM is always either equal or less than that of the GAN.
However, for U , the TNBM and the GAN trade-off in being
the winner. This is not a surprise, as in Table III the TNBM
and the GAN produced very similar values for the utility. The
same argument from Section VI D holds such that both the
TNBM and GAN are able to generate low cost samples. Sim-
ply, the TNBM contains more diversified high quality sam-
ples, which is not captured by the metric U .

E F R C

0.989 0.982 0.971 0.405

0.989 0.978 0.968 0.406

0.989 0.971 0.961 0.401

0.989 0.984 0.973 0.407

0.989 0.983 0.973 0.406

0.989 0.985 0.975 0.407

0.989 0.978 0.967 0.405

0.989 0.977 0.967 0.404

0.989 0.987 0.977 0.406

0.989 0.987 0.977 0.409

TABLE VII. TNBM pre-generalization and validity-based gener-
alization metrics’ values across multiple training datasets from
the same problem instance. We see that the metrics have sim-
ilar values across the 10 datasets under examination with relative
percentage errors (0.5%, 0.5%, 0.5%) for (F,R,C) values respec-
tively. Thus, our metrics produce similar values across multiple train-
ing datasets, demonstrating that they are independent of the portion
of training samples selected from the valid space.

U UT MV MVT

0.1041 0.1064 0.1032 0.1018

0.1040 0.1065 0.1021 0.1034

0.1042 0.1067 0.1019 0.1018

0.1038 0.1064 0.1019 0.1031

0.1029 0.1062 0.1017 0.1033

0.1044 0.1065 0.1018 0.1027

0.1043 0.1068 0.1028 0.1036

0.1048 0.1065 0.1024 0.1029

0.1044 0.1064 0.1017 0.1039

0.1056 0.1064 0.1038 0.1021

TABLE X. GAN quality-based metrics’ values across various
training datasets from the same problem instance. The second
and last columns display the values for the training set, defined as
the U and the MV computed for the samples in DTrain. We see that
the GAN’s U is always less than the training threshold; however, this
is not always true for MV , as the GAN has a lower MV value only
70% of the time.

An additional analysis on the stability of the different gen-
erative models would be the investigation of their generaliza-
tion capabilities across different problem instances, especially
the ones characterized by larger asset universes, e.g. N = 500
(which would correspond to all the assets in the S&P500 in-
dex). We highlight here that our approach is not limited to
the relatively small universe size considered in this work, i.e.
N = 20, that was chosen to allow for a practically feasible
comparison with quantum generative models in the near term.
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E F R C

0.999 0.249 0.249 0.0062

0.996 0.236 0.235 0.0062

0.996 0.309 0.307 0.0063

0.998 0.233 0.233 0.0042

0.995 0.181 0.179 0.0049

0.999 0.232 0.232 0.0061

0.997 0.274 0.274 0.0110

0.997 0.276 0.275 0.0071

0.999 0.239 0.239 0.0066

0.994 0.251 0.249 0.0077

TABLE VIII. GAN pre-generalization and validity-based gener-
alization metrics’ values across multiple training datasets from
the same problem instance. We see that the metrics have similar
values across the 10 datasets under examination with mean standard
deviations (13%, 13%, 30%) for (F,R,C) values respectively. De-
spite not being nearly as stable as the TNBM, we see that our metrics
produce similar values across multiple training datasets, demonstrat-
ing that they independent of the portion of training samples selected
from the valid space.

U UT MV MVT

0.1049 0.1064 0.1017 0.1018

0.1049 0.1065 0.1017 0.1034

0.1048 0.1067 0.1017 0.1018

0.1049 0.1064 0.1017 0.1031

0.1047 0.1062 0.1017 0.1033

0.1049 0.1065 0.1017 0.1027

0.1051 0.1068 0.1017 0.1036

0.1049 0.1065 0.1017 0.1029

0.1048 0.1064 0.1017 0.1039

0.1049 0.1062 0.1017 0.1021

TABLE IX. TNBM quality-based metrics’ values across various
training datasets from the same problem instance. The second
and last columns display the values for the training set, defined as
the U and the MV computed for the samples in DTrain. We see that
the TNBM’s U and MV is always less than the training threshold.
Additionally, the same lowMV value that exists in the fixed problem
universe is generated independent of the training set.

Appendix E: Supplementary Figures

We include supplementary figures to further demonstrate
some of our results. Specifically, in Figure 15 we provide 2D
visualizations of the data distribution (Figure 15a), the train-
ing distribution (Figure 15b), and the output distributions of

the trained TNBM (Figure 15c) and GAN (Figure 15d) for
a N = 20, k = 10 problem instance. In the 2D image,
every pixel is associated to one of the 2N bitstrings in the
search space U , and its color encodes the associated probabil-
ity value. We can see that the bi-dimensional representation of
the data distribution displays a non-trivial pattern defined by
the solution space S . Remarkably, provided the small amount
of samples that do not demonstrate a very clear pattern in the
training distribution, the TNBM and GAN are able to learn the
unknown correlations: in particular, the TNBM is able to al-
most perfectly infer the patterns in the data distribution from
very little information. This result is in alignment with our
findings in Section VI B that suggest that TNBMs are able to
infer the ground truth distribution from few training data, as
indicated by the value of KLTarget.

In Figure 16, we provide a visualization of the GAN
quality-based generalization metrics in analogy to Figure 8.
By comparing the two plots, we can see that both models
reach the low-risk section of the spectrum, but the TNBM
samples exhibit more diversity than the GAN ones.

In Figure 17 we display a comparison of the training stabil-
ity of TNBM and all the three GANs considered in this work,
showing how good each of the model is in capturing the cor-
rect cardinality pattern encoded in the dataset. We can detect
the higher instability affecting GAN models, as opposed to the
MPS performance, which appears remarkable. We highlight
that even if the TNBM produces only queries with a given
cardinality, similar to the GAN-MC histograms, the quantum-
inspired model is not exhibiting mode collapse onto an unseen
and valid bitstring, as the coverage is not negligible as in the
GAN-MC case (see Table II).

In Figure 18, we showcase the full data from which val-
ues in Table I are extracted. Here, we demonstrate the av-
erage (F,R,C) values throughout five independent TNBM
trainings of α = 7. We show that with each training itera-
tion, the metrics improve towards optimal (F,R,C) values.
To complement this information, we also plot the KL diver-
gence of the model’s output distribution relative to the un-
known data distribution (KLTarget) as well as the model’s out-
put distribution relative to the training distribution (KLTrain)
for ε ∈ {0.01, 0.5, 1.0}. As discussed in Section I, according
to computational learning theory, a model is able to generalize
well if it can successfully infer the ground truth data distribu-
tion given the amount of training data available: we encode
this information in KLTarget, even though other metrics may
be used for the same purpose, such as the Total Variation Dis-
tance [22]. As we see that the KLTarget < KLTrain across ε
values, we can conclude that, in various training data regimes,
the model is able to output data that is closer to the ground
truth than the training data provided. We showcase the KL
divergence alongside the (F,R,C) values during training to
emphasize that our metrics agree with proposed evaluation
schemes in computational learning theory discussed in Sec-
tion I.
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(a) (b)

(c) (d)

FIG. 15. 2D Visualization of distributions. Figure 15a shows the 2D visualization of the exact data distribution defined by the solution space
S, where we see that a specific pattern emerges from the cardinality. In Figure 15b, we display the 2D visualization for the training distribution,
where the same distribution was given to both the TNBM and the GAN models. As shown in Figure 15c, it is very remarkable that with this
very limited number of training patterns provided to each model, the TNBM is able to generate the pattern from the data distribution almost
exactly (as reflected in the metric values too). On the contrary, in Figure 15d we see that while the GAN is able to learn portions of the pattern,
it struggles to reproduce this data distribution.
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FIG. 16. Visualization of quality-based metrics for GAN-
generated queries. The plot displays the number of portfolio counts
associated to given risk values. The green spikes represent valid
GAN queries, whereas the gray spikes represent the samples from the
training set. Note that for calculating our metrics, we used Q = 105

queries, but the training distribution only contains 1,848 samples,
hence the need for normalizing the histograms. Here, we set the
utility threshold to t = 5%. Similar to the TNBM, the model dis-
tribution learns the low-risk ‘bias’ encoded in the training set, and
generates more values of low risk. However, unlike the TNBM, the
model frequency counts per query are higher, and the sample diver-
sity is quite low. The queries have a lower utility (green dashed) than
the training set (black dashed), thus meeting the condition in Eq.
(12). Ultimately, no matter the query count, we see that the GAN
can reach low risk queries, but simply has less diversity among them
in contrast to the TNBM.
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FIG. 17. Cardinality distributions of queries generated by multiple models during independent trainings. We represent cardinality
histograms obtained when taking Q = 105 queries from three independently trained instances of each model family (TNBM, GAN, GAN-
MC, GAN+). Each plot displays the cardinality distribution of the retrieved queries, along with the desired cardinality k = 10. We can see that
the three TNBM models generate queries that always learn accurately the cardinality constraint, whereas the GAN models show less training
stability, which is known to be one of the issues affecting this class of classical generative models. Specifically, for GAN and GAN+ we see
that while each model always produces at least some valid queries, the centers and tails of the distributions vary greatly for each instance. For
GAN-MC, distinct trainings collapse onto different cardinalities, implying that the model is not always guaranteed to generate valid queries.
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FIG. 18. TNBM’s generalization performance throughout training across various ε values. Here, we show the relationship between
the model’s ability to learn the ground truth distribution with access to a restricted portion ε of the solution space, and the (F,R,C) values
computed throughout the model’s training. In panel (a), we see the KLTrain is always higher than theKLTarget across ε values - indicating good
inference performance. Panels (b), (c), and (d) show that the model’s (F,R,C) values increase throughout training (note that coverage is not
defined (nan) for ε = 1). The concurrent relationship between approximating the ground truth and obtaining high (F,R,C) values suggests a
positive correlation between our practical models’ performance benchmarking approach and computational learning theory.
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