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Abstract

Significant effort in applied quantum computing has been devoted to the problem of ground
state energy estimation for molecules and materials. Yet, for many applications of practical
value, additional properties of the ground state must be estimated. These include Green’s
functions used to compute electron transport in materials and the one-particle reduced density
matrices used to compute electric dipoles of molecules. In this paper, we propose a quantum-
classical hybrid algorithm to efficiently estimate such ground state properties with high accuracy
using low-depth quantum circuits. We provide an analysis of various costs (circuit repetitions,
maximal evolution time, and expected total runtime) as a function of target accuracy, spectral
gap, and initial ground state overlap. This algorithm suggests a concrete approach to using early
fault tolerant quantum computers for carrying out industry-relevant molecular and materials
calculations.
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1 Introduction

One of the primary applications of quantum computing is the simulation of materials and molecules,
which are inherently quantum mechanical. It is hoped that future powerful quantum computers
will be used in the development of materials and drug discovery [CRAG18]. Although they have
yet to realize commercial application, quantum computers have been improving at a rapid rate,
increasing the demand for quantum algorithms with high-impact use cases. To date, the main fo-
cus of quantum algorithm development for quantum chemistry and materials has been on ground
state energy estimation [CRO+19]. This problem is mathematically formulated as estimating the
lowest eigenvalue of the Hamiltonian matrix that characterizes the physical system. One of the
first quantum chemistry applications of quantum computers was the use quantum phase estimation
for estimating the ground state energy of small molecules [AGDLHG05]. More recently, the varia-
tional quantum eigensolver algorithm [PMS+14a] was developed to use near-term intermediate-scale
quantum (NISQ) computers to solve the ground state energy estimation problem.

However, in characterizing materials or analyzing small molecules for drug discovery, one often
needs to estimate properties of the ground state beyond just the energy. These include transport
properties [MW92], electric dipole moments [Jen17], and molecular forces [OSS+19]. Such properties
depend on expectation values of observables O with respect to the ground state of a Hamiltonian
H. The problem of estimating such quantities was studied in [Amb14, GY19, GPY20], showing
that it is even harder, in a complexity theoretic sense, than the ground state energy estimation
problem in general. The algorithms considered in these works were developed for idealistic quantum
computers. In particular, the quantum circuit depths involved in these methods are too deep to even
be implemented on early fault-tolerant quantum computers. An approach to estimating ground state
properties that is more amenable to near-term quantum computers is to use the variational quantum
eigensolver algorithm [MMS+19, OSS+19]. This gives a means to prepare an approximation to the
ground state, from which properties can be estimated. However, recent work has suggested that
VQE alone is not practical for solving problems of industrial relevance [GRB+20]; methods which
invoke some degree of quantum amplification (e.g. [WKJC21]) seem necessary in order for quantum
computers to compete with state-of-the-art methods in quantum chemistry and materials. Further
issues with the variational quantum eigensolver and its variants are that there are no guarantees on
the quality of the output ground state and that heuristic optimization methods struggle to prepare
high-fidelity ground states.

This motivates the development of quantum algorithms for ground state property estimation
which are both reliable and able to be run on near-term quantum computers (e.g. early fault-tolerant
quantum devices). The central question that this paper addresses is then:

Is it possible to estimate ground state properties of a Hamiltonian reliably using early fault-tolerant
quantum computers?

In this paper, we provide an affirmative answer to this question. Furthermore, we propose an
algorithm for the ground state property estimation using low-depth quantum circuits. The main
theorem is stated as follows:

Theorem 1.1 (Main theorem, informal). Given a Hamiltonian H and an observable O. Suppose we
have access to a unitary UI that prepares a state |φ0〉 that has non-trivial overlap with the ground
state |ψ0〉 of H. Then, there exists an algorithm to estimate 〈ψ0|O |ψ0〉 with high accuracy and
low-depth: the maximal Hamiltonian evolution time is Õ(γ−1), where γ is the spectral gap of H.

We note that the maximal evolution time, which is the maximal length of time we need to
perform coherent time evolution, can roughly determine the depth of the quantum circuit. Our
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result achieves a nearly-linear dependence on γ−1 and only poly-logarithmic on the accuracy ε−1,
which improves the Õ(ε−1) maximal evolution time in the ground state energy estimation algorithms
[LT21, Som19]. On the other hand, our result does not violate the Heisenberg limit because the
total evolution time still depends on poly(ε−1). Hence, our algorithm has a great advantage when
the Hamiltonian’s spectral gap is much larger than the estimation accuracy, making it easier to be
implemented in the early fault-tolerant devices.

Organization. In Section 2 we formally state the problem of ground state property estimation.
In Section 3 we review the method developed in [LT21] for estimating ground state energies. In
the next three sections we explain our main algorithms and give an analysis for their performances
starting from the simplest case and building to the most-involved, general case. Section 4 presents
the case of a unitary observable which commutes with the Hamiltonian. Section 5 presents the
case of a unitary observable which does not necessarily commute with the Hamiltonian. Section 6
describes the case of a general observable. Then, Section 7 gives two applications of the ground
state property estimation algorithm. Section 8 gives a discussion of the results and presents some
open questions.

2 Ground State Property Estimation Problem

In this section, we will formally define the ground state property estimation problem. This problem
was initially studied by Ambainis [Amb14] as the approximate simulation problem (APX-SIM), and
he proved that APX-SIM is PQMA[log]-complete.

Problem 2.1 (Approximate simulation (APX-SIM), [Amb14]). Given a k-local Hamiltonian H, an
`-local observable O, and real numbers a, b, ε such that b − a ≥ 1/ poly(n), and ε ≥ 1/ poly(n), for
n the number of qubits the Hamiltonian H acts on, decide:

• Yes case: H has a ground state |ψ0〉 such that 〈ψ0|O |ψ0〉 ≤ a,

• No case: for any state |ψ〉 with 〈ψ|H |ψ〉 ≤ λ0 + ε where λ0 is the ground state energy of H,
it holds that 〈ψ0|O |ψ0〉 ≥ b.

In the follow-up works, APX-SIM was shown to be PQMA[log]-complete even for 5-local Hamilto-
nian and 1-local observable [GY19], and also for some physics models like 2D Heisenberg model and
1D line model [GPY20, WBG20]. However, these previous studies only considered the worst-case
hardness, and thus they defined Problem 2.1 as a decision problem. For the purpose of designing
efficient algorithms, we first define the “search version” of APX-SIM as follows:

Problem 2.2 (Search version of APX-SIM). Given a Hamiltonian H, an observable O, and ε ∈
(0, 1), with Ω(1) probability, estimate 〈ψ0|O |ψ0〉 with an additive/multiplicative error at most ε.

In general, Problem 2.2 will not be more tractable than Problem 2.1. Thus, we may need
some prior information about the Hamiltonian H and its ground state. Motivated by the widely
used variational quantum eigensolver (VQE) [PMS+14b, MRBAG16] and the Hartree-Fock method
[SO12] in quantum chemistry, it is reasonable to assume that we get access to an initial state |φ0〉 that
has a nontrivial overlap with the ground state of H. Moreover, we assume that the Hamiltonian H
has a nontrivial spectral gap. We note that almost all Hamiltonians in practice satisfy this condition.
With these assumptions, we formally define the ground state property estimation problem as follows:
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Problem 2.3 (Ground state property estimation). Given a Hamiltonian H with spectral gap γ and
ground state |ψ0〉, an observable O, a unitary UI such that it prepares an initial state |φ0〉 with
|〈φ0|ψ0〉|2 ≥ η, and ε ∈ (0, 1), estimate 〈ψ0|O |ψ0〉 with an additive/multiplicative error at most ε
with Ω(1) probability.

Remark 2.4. We notice that when O = H, Problem 2.3 becomes the ground state energy estimation
problem. Moreover, our assumptions on the initial state and the spectral gap are also used in many
ground state energy estimation algorithms [GTC19, LT20a, LT21].

3 An Overview of the Low-Depth Ground State Energy Estimation

In this section, we provide a brief overview of the low-depth ground state energy estimation algorithm
proposed by Lin and Tong [LT21]. Our algorithms are inspired by this algorithm and use it as a
subroutine.

More specifically, they showed that:

Theorem 3.1 ([LT21]). Given a Hamiltonian H with eigenvalues in the interval [−π/3, π/3] and its
ground state |ψ0〉 has energy λ0. And suppose we can prepare an initial state |φ0〉 such that p0 ≥ η
for some known η, where p0 := |〈φ0|ψ0〉|2. Then, for any ε, ν ∈ (0, 1), there exists an algorithm that
estimates λ0 with an additive error ε with probability 1 − ν, by running a parameterized quantum
circuit with the maximum quantum evolution time Õ(ε−1) and the expected total quantum evolution
time Õ(ε−1η−2).

The pseudo-code of their algorithm is given in Algorithm 1.
The main technique of their algorithm is a classical post-processing procedure that extracts

information from the following Hadamard test circuit (Figure 1).

|0〉 H • W H

|φ0〉 e−ijτH

Figure 1: Quantum circuit parameterized by j. H is the Hadamard gate and W is either I or a
phase gate.

Suppose the initial state |φ0〉 can be expanded as |φ0〉 =
∑

k αk |ψk〉 in the eigen-basis of H and
let pk := |αk|2 be the overlap with the k-th eigenstate. They considered the overlaps p0, p1, . . . as
a density function:

p(x) :=
∑
k

pkδ(x− λk). (1)

Then, the CDF C(x) can be defined by the convolution of p(x) and the 2π-periodic Heaviside
function H(x), which is 0 in [(2k − 1)π, 2kπ) and 1 in [2kπ, (2k + 1)π) for any k ∈ Z. Thus, C(x)
is also a periodic function, which makes it convenient to apply the Fourier approximation. They
showed that H(x) can be approximated by a low-Fourier degree function F (x) in the intervals
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Algorithm 1 Ground State Energy Estimation
1: procedure EstimateGSE(ε, τ, η, ν)
2: . Initialization
3: d← O(δ−1 log(δ−1η−1)), δ ← τε
4: for i← −d, . . . , d do
5: F̂i ← F̂d,δ,i
6: Compute θi, the phase angle of F̂i
7: end for
8: F ←∑

|i|≤d |F̂i|
9: Nb ← Ω(log(1/ν) + log log(1/δ)), Ns ← O(η−2 log2(d))

10: . Sampling from the quantum circuit
11: for k ← 1, . . . , NbNs do
12: Independently sample Jk ∼ [−d, d] with Pr[Jk = j] ∝ |F̂j |
13: Measure (Xk, Yk) by running the quantum circuit with (Figure. 1) parameter k
14: Zk ← Xk + iYk
15: end for
16: . Classical post-processing
17: xL ← −π/3, XR ← π/3
18: while xR − xL > 2δ do . Invert CDF
19: xM ← (xL + xR)/2
20: for r ← 1, . . . , Nb do
21: Gr ← F

Ns

∑rNs
k=(r−1)Ns+1 Zke

i(θJk+JkxM ) . Multi-level Monte Carlo method
22: end for
23: if |{r : Gr ≥ (3/4)η}| ≤ Nb/2 then
24: xR ← xM + (2/3)δ
25: else
26: xL ← xM − (2/3)δ
27: end if
28: end while
29: return (xL + xR)/2
30: end procedure

[−π + δ,−δ] and [δ, π − δ]. Then, they defined the approximated cumulative distribution function
(ACDF) as C̃(x) := (F ? p)(x) and proved that

C(x− δ)− η/8 ≤ C̃(x) ≤ C(x+ δ) + η/8 ∀x ∈ [−π/3, π/3]. (2)

Moreover, for each x, we have

C̃(x) =
∑
|j|≤d

F̂je
ijx · 〈φ0| e−ijH |φ0〉 , (3)

where F̂j is the Fourier coefficient of F (x). Note that 〈φ0| e−ijH |φ0〉 can be estimated via the
parameterized quantum circuit (Figure 1). Hence, we can estimate the ACDF at every point in
[−π/3, π/3]. Moreover, they showed that the multi-level Monte Carlo method can be applied here
to save the number of samples needed to achieve a high-accuracy estimation (Line 21).

Therefore, we can estimate the ground state energy λ0 by locating the first non-zero point of
the CDF C(x), which is η/8-approximated by the ACDF C̃(x). Since we assume that p0 ≥ η, the
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approximation error and the estimation error of C̃(x) can be tolerated, and we can find λ0 via a
robust binary search (Line 18).

We note that the maximal evolution time of this algorithm corresponds to the Fourier degree of
F (x), which is Õ(ε−1) by the construction. More details of this algorithm and the proofs are given
in Appendix A.

4 Algorithm for Commutative Case

In this section, we consider a easier case that O is unitary and commutes with the Hamiltonian H,
and give a two-step quantum-classical hybrid algorithm for Problem 2.3. More specifically, suppose
the initial state can be expanded in the eigenbasis as follows: φ0 =

∑
k ck |ψk〉 with pk := |ck|2. We

note that {|ψk〉} is also an eigenbasis of O since O and H commute. In Step 1, we run [LT21]’s
algorithm to estimate the ground state energy λ0 and the overlap between the initial state and the
ground state p0. In Step 2, we construct a similar CDF function for the density

∑
k Okpkδ(x− λk),

where Ok := 〈φk|O |φk〉. If we evaluate the CDF at λ0, we can obtain an estimate of O0.

4.1 Step 1: estimate the initial overlap

We first run the procedure EstimateGSE (Algorithm 1) to estimate the ground state energy λ0
with an additive error ε. Let x? be the output. We remark that x? satisfy C(x? + τε) ≥ p0 and
C(x? − τε) = 0. However, we can only extract p0 from the ACDF C̃(x), which satisfies:

C(x− τε)− η/8 ≤ C̃(x) ≤ C(x+ τε) + η/8 ∀x ∈ [−π/3, π/3]. (4)

If [x− τε, x+ τε] contains a “jump” of C(x), i.e., an eigenvalue λk, then the approximation error of
C̃(x) will be large.

Hence, we say a point x is “good” for λk if [x − τε, x + τε] is contained in [τλk, τλk+1). It is
easy to see that C̃(x) will be an η/8-additive approximation of

∑
j≤k pk if x is good. Our goal is to

find an xgood that is good for λ0, and estimating C̃(xgood) gives the overlap p0. The following claim
gives a way to construct xgood using the spectral gap of H.

Claim 4.1 (Construct xgood). Let γ be the spectral gap of the Hamiltonian H. For any ε ∈ (0, γ/4),
x? + τγ/2 is good for λ0, where x? is the output of EstimateGSE(ε, η) (Algorithm 1).

Proof. We know that x? satisfies:

x? − τε < τλ0 ≤ x? + τε. (5)

Then, we have

x? + τγ/2 > τλ0 − τε+ τγ/2 > τλ0 + τε. (6)

We also have

x? + τγ/2 < τλ0 + τε+ τγ/2 (7)
≤ τ(λ1 − γ) + τε+ τγ/2

= τλ1 + τ(ε− γ/2)

< τλ1 − τε. (8)

Therefore, x? is good for λ0.
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We note that in [LT21], the ACDF’s approximation error is chosen to be η/8. We may directly
change it to εη/8 without significantly changing the circuit depth, since by Lemma A.8 the degree
of F can only blowup by a log factor of ε.

Lemma 4.2 (Estimating the overlap). For any ε0, ν ∈ (0, 1), the overlap p0 := |〈φ0|ψ0〉|2 can
be estimated with multiplicative error 1 ± O(ε0) with probability 1 − ν by runs the quantum circuit
(Figure 1) Õ(ε−20 η−2) times with expected total evolution time Õ(γ−1ε−2η−2) and maximal evolution
time O(γ−1).

Proof. By Claim 4.1, if we set the additive error of ground state energy λ0 to be O(γ), then we can
construct an xgood that is good for λ0. By Theorem 3.1, it can be done with maximum quantum
evolution time Õ(γ−1) and the expected total quantum evolution time Õ(γ−1η−2). Notice that we
need to take d = O(δ−1 log(δ−1ε−10 η−1)) (Line 3 in Algorithm 1) to make C̃(xgood) be an O(ε0η)-
approximation of p0, where δ = τγ.

Next, we estimate C̃(xgood) with additive error ηε with probability 1− ν. We have an unbiased
estimator

G(x;Z,J) = FZeiθJ+Jx (9)

with variance O(log2(d)) and expected evolution time Õ(τd/ log(d)). If we naively take the sample
mean as the estimator, then by Chebyshev’s inequality, the sample complexity is Õ(ε−20 η−2ν−2) to
have an additive error O(ε0η) with probability 1− ν.

Instead, we can use the so-called “median-of-means” trick to reduce the sample complexity.
More specifically, let Ng = O(log(1/ν)) and K = O(ε−20 ). We first partition m = NgK samples
(Z1, J1), . . . , (Zm, Jm) into Ng groups of size K. Then, for any i ∈ [Ng], the i-th group mean is

Gi :=
1

K

K∑
j=1

G(x;Z(i−1)K+j , J(i−1)K+j). (10)

The final estimator is given by the median of these group means, i.e.,

G(x) := median(G1, . . . , GNg). (11)

By Chernoff bound, it is easy to see that G(x) has an additive error at most (ηε0) with probability
1− ν. It will imply that multiplicative error is at most 1±O(ε0) since p0 = Θ(η). And the sample
complexity of G(x) is Õ(ε−20 η−2). Hence, the expected total evolution time is Õ(γ−1ε−20 η−2). Since
we run the same quantum circuit to estimate G(x), the maximal evolution time is still Õ(γ−1).

4.2 Step 2: estimate the O-weighted CDF

To estimate the expectation value of O, consider the following quantum circuit:
Define the random variables Xj , Yj be as follows: for W = I, Xj := 1 if the outcome is 0, and

Xj := −1 if the outcome is 1. For W = S, Yj := −1 if the outcome is 0, and Yj := 1 if the outcome
is 1.

Then, we have the following claim on the expectation of the random variables Xj , Yj :

Claim 4.3 (A variant of Hadamard test). For any j ∈ Z, the random variable Xj + iYj is an
un-biased estimator for 〈φ0|Oe−ijτH |φ0〉.
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|0〉 H • • W H

|φ0〉 e−ijτH O

Figure 2: Quantum circuit parameterized by j. H is the Hadamard gate and W is either I or a
phase gate S.

We can expand 〈φ0|Oe−ijτH |φ0〉 in the eigenbasis of H (which is also an eigenbasis of O):

〈φ0|Oe−ijτH |φ0〉 =
∑
k,k′

c∗kck′e
−ijτλk 〈ψk|O

∣∣ψ′k〉
=
∑
k

pkOke
−ijτλk , (12)

where the last step follows from the simultaneous diagonalization of O andH, and Ok := 〈ψk|O |ψk〉.
We may assume that |Ok| ≤ 1 for any k ∈ N.

Inspired by the ground state energy estimation algorithm in [LT21], we define the O-weighted
“density function” for the observable as follows:

pO(x) :=
∑
k

pkOkδ(x− τλk). (13)

Note that pO(x) can be negative at some points.
Suppose the eigenvalues of τH is within [−π/3, π/3]. Then, we define the O-weighted CDF and

ACDF for pO(x) similar to [LT21]:

CO(x) := (H ∗ pO)(x), C̃O(x) := (F ∗ pO)(x), (14)

where H is the 2π-periodic Heaviside function and F = Fd,δ is the Fourier approximation of H
constructed by Lemma A.8. It is easy to verify that CO(x) equals to

∑
k pkOk1x≥pkOk for any

x ∈ [−π/3, π/3].
The following lemma gives an unbiased estimator for the O-weighted ACDF.

Lemma 4.4 (Estimating the O-weighted ACDF). For any x ∈ [−π, π], there exists an unbiased
estimator GO(x) for the O-weighted ACDF C̃O(x) with variance Õ(1).

Furthermore, GO(x) runs the quantum circuit (Figure 2) with expected total evolution time
O(τd/ log(d)), where d is the Fourier degree of F .
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Proof. C̃O(x) can be expanded in the following way:

C̃O(x) = (F ∗ pO)(x) (15)

=

∫ π

−π
F (x− y)pO(y)dy

=
∑
|j|≤d

∫ π

−π
F̂je

ij(x−y)pO(y)dy

=
∑
|j|≤d

F̂je
ijx

∫ π

−π
pO(y)e−ijydy

=
∑
|j|≤d

F̂je
ijx
∑
k

pkOke
−ijτλk

=
∑
|j|≤d

F̂je
ijx · 〈φ0|Oe−ijτH |φ0〉 , (16)

where the third step follows from the Fourier expansion of F (x − y), the fifth step follows from
the property of Dirac’s delta function, and the last step follows from the definition of pk and the
eigenvalues of matrix exponential.

Define an estimator G(x;J,Z) as follows:

G(x;J,Z) := F · Zei(θJ+Jx), (17)

where θj is defined by F̂j = |F̂j |eiθj , Z = X + iY measured from the quantum circuit (Figure 2)
with parameter j = J, and F =

∑
|j|≤d |F̂j |.

Then, we show that G(x;J,Z) is un-biased:

E[G(x;J,Z)] =
∑
|j|≤d

E
[
(Xj + iYj)e

i(θj+jx)|F̂j |
]

(18)

=
∑
|j|≤d

F̂je
ijx · E [Xj + iYj ]

=
∑
|j|≤d

F̂je
ijx · 〈φ0|Oe−ijτH |φ0〉

= C̃(x), (19)

where the third step follows from Claim 4.3. Moreover, the variance of G can be upper-bounded
by:

Var[G(x;J,Z)] = E[|G(x;J,Z)|2]− |E[G(x;J,Z)]|2 (20)

≤ E[|G(x;J,Z)|2]
≤ 2F2, (21)

where the third step follows from |ei(θJ+Jx)| = 1, and the last step follows from Xj , Yj ∈ {±1}. By
Lemma A.8, we know that |F̂j | = O(1/|j|). Hence, we have F =

∑
|j|≤dO(1/|j|) = O(log d). Thus,

Var[G(x;J,Z)] = O(log2(d)).
The expected total evolution time is

Ttot := E[|J |] = τ
∑
|j|≤d

|j| · |F̂j |F = O(τd/ log(d)). (22)
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The lemma is then proved.

The following lemma shows that the O-weighted CDF CO(x) can be approximated by the O-
weighted ACDF C̃O(x):

Lemma 4.5 (Approximating the O-weighted CDF). For any ε > 0, 0 < δ < π/6, let F (x) :=
Fd,δ(x) constructed by Lemma A.8 with approximation error ηε/8. Then, for any x ∈ [−π/3, π/3],
it holds that:

CO(x− δ)− ηε/8 ≤ C̃O(x) ≤ CO(x+ δ) + ηε/8. (23)

The proof is very similar to Lemma A.9, so we omit it here.
We can take δ := τγ/5 and let xgood := x? + τγ/2. Then, by Claim 4.1, we know that xgood is

good for λ0, i.e., [xgood − τγ, xgood + τγ] ⊂ (τλ0, τλ1). Hence, C̃O(xgood) satisfies∣∣∣C̃O(xgood)− p0O0

∣∣∣ ≤ ηε/8. (24)

The following lemma shows how to estimate C̃O(xgood), which is very similar to Lemma 4.2.

Lemma 4.6 (Estimating p0O0). For any ε1, ν ∈ (0, 1), p0O0 can be estimated with multiplicative
error 1±O(ε1) with probability 1− ν by runs the quantum circuit (Figure 1) Õ(ε−21 η−2) times with
expected total evolution time Õ(γ−1ε−21 η−2) and maximal evolution time O(γ−1).

4.3 Putting it all together

In this section, we will put the components together and prove the following main theorem, which
gives an algorithm for the ground state property estimation.

Theorem 4.7 (Ground state property estimation with commutative observable, restate). Suppose
p0 ≥ η for some known η. Then, for any ε, ν ∈ (0, 1), the ground state property 〈ψ0|O |ψ0〉 can be
estimated within additive error at most ε with probability 1− ν, such that:

1. the number of times running the quantum circuits (Figure 1 and 2) is Õ(ε−2η−2),

2. the expected total evolution time is Õ(γ−1ε−2η−2),

3. the maximal evolution time is Õ(γ−1).

Proof. By Lemma 4.2, we obtain p0 such that∣∣p0 − p0∣∣ ≤ O(ηε0), (25)

where ε0 will be chosen shortly.
By Lemma 4.6, we obtain p0O0 such that∣∣p0O0 − p0O0

∣∣ ≤ O(ηε1), (26)

where ε1 will be chosen shortly.
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Then, we have ∣∣∣∣p0O0

p0
−O0

∣∣∣∣ =

∣∣∣∣p0O0

p0
− p0O0

p0
+
p0O0

p0
− p0O0

p0

∣∣∣∣ (27)

≤ |p0O0 − p0O0|
p0

+ |p0O0|
∣∣∣∣ 1

p0
− 1

p0

∣∣∣∣
≤ O(ηε1)

p0 −O(ηε0)
+ |p0O0|

∣∣∣∣ 1

p0 −O(ηε0)
− 1

p0

∣∣∣∣
≤ O(ηε1)

η −O(ηε0)
+ |p0O0|

∣∣∣∣ 1

p0 − p0O(ε0)
− 1

p0

∣∣∣∣
≤ O(ε1)(1−O(ε0)) + |O0|(1 +O(ε0)− 1)

≤ O(ε0 + ε1), (28)

where the second step follows from the triangle inequality, the third step follows from Eqs. (25) and
(26), the third step follows from p0 ≥ η, the fifth step follows from 1

1−x ≤ 1 +O(x) for x ∈ (0, 1).
Hence, if we take ε0 = ε1 = O(ε), we will achieve additive error at most ε.
For the success probability, we can make Eq.(25) hold with probability 1 − ν/2 in Lemma 4.2

and Eq.(26) hold with probability 1− ν/2 in Lemma 4.6. Then, by the union bound, we get a good
estimate with probability at least 1− ν.

The computation costs follow directly from Lemma 4.2 and Lemma 4.6. And the proof of the
theorem is then completed.

5 Algorithm for General Unitary Observables

In this section, we will prove the following theorem for unitary observables in the general case:

Theorem 5.1 (Ground state property estimation with general unitary observable). Suppose p0 ≥ η
for some known η and the spectral gap of the Hamiltonian H is at least γ. For any ε, ν ∈ (0, 1),
there exists an algorithm for estimating the ground state property 〈ψ0|O |ψ0〉 within additive error
at most ε with probability at least 1− ν, such that:

1. the expected total evolution time is Õ(γ−1ε−2η−2)

2. the maximal evolution time is Õ(γ−1).

In the following parts, we will first introduce the 2-d O-weighted density function and CDF,
which extend the commuting observables to the general case. Then, we will show how to combine
them with the overlap estimation in Section 4.1 for proving Theorem 5.1.

5.1 2-d O-weighted density function and CDF

Let |φ0〉 =
∑

k ck |ψk〉 where |ck|2 = pk. In general, O and H may not commute. Hence, we consider
a more symmetric form of expectation: 〈φ0| e−ijτHOe−ij′τH |φ0〉, which can be expanded in the
eigenbasis of H as follows:

〈φ0| e−ijτHOe−ij
′τH |φ0〉 =

∑
k,k′

c∗kck′e
−ijτλke−ij

′τλk′ 〈ψk|O
∣∣ψ′k〉

=
∑
k,k′

c∗kck′e
−ijτλk′e−ij

′τλk′ 〈ψk|O |ψk′〉 (29)

10



Algorithm 2 Ground State Property Estimation (Commutative Case)
1: procedure EstimateGSProp(ε, τ, η, γ, ν)
2: δ ← O(τγ), d← O(δ−1 log(δ−1ε−1η−1))
3: for j ← −d, . . . , d do
4: Compute F̂j := F̂d,δ,j and θj
5: end for
6: . Estimate the ground state energy
7: x? ← EstimateGSE(γ/8, τ, η, ν/10)
8: xgood ← x? + τγ/2
9: . Generate samples from the Hadamard test circuits

10: Ng ← O(log(1/ν)), K ← O(ε−2)
11: for k ← 1, . . . , NgK do
12: Sample (Zk, Jk) from the quantum circuit (Figure 1)
13: Sample (Z ′k, J

′
k) from the quantum circuit (Figure 2)

14: end for
15: . Estimate p0
16: for i← 1, . . . , Ng do
17: Gi ← 1

K

∑K
j=1G(xgood;Z(i−1)K+j , J(i−1)K+j)

18: end for
19: p0 ← median(G1, . . . , GNg)
20: . Estimate p0O0

21: for i← 1, . . . , Ng do
22: G

′
i ← 1

K

∑K
j=1G(xgood;Z ′(i−1)K+j , J

′
(i−1)K+j)

23: end for
24: p0O0 ← median(G

′
1, . . . , G

′
Ng)

25: return p0O0/p0
26: end procedure

Similar to the commutative case, we define a 2-d O-weighted density function:

pO,2(x, y) :=
∑
k,k′

c∗kck′Ok,k′δ(x− τλk)δ(y − τλk′), (30)

where Ok,k′ := 〈ψk|O |ψk′〉. Then, define the corresponding 2-d O-weighted CDF function as follows:

CO,2(x) := (H2 ∗ pO,2)(x, y), (31)

where H2(x, y) := H(x) ·H(y), the 2-d 2π-periodic Heaviside function.

11



We first justify that CO,2 is indeed a CDF of pO,2 in [−π/3, π/3]:

C2(x, y) =

∫ π

−π

∫ π

−π
H2(x− u, y − v)p(u, v)dudv (32)

=
∑
k,k′

c∗kck′Ok,k′ ·
∫ π

−π

∫ π

−π
H2(x− u, y − v)δ(u− τλk)δ(v − τλk′)dudv

=
∑
k,k′

c∗kck′Ok,k′ ·H(x− τλk)H(y − τλk′)

=
∑
k,k′

c∗kck′Ok,k′ · 1x≥τλk,y≥τλk′

=
∑

k:τλk≤x,
k′:τλk′≤y

c∗kck′Ok,k′ . (33)

Hence, the definition of CO,2 is reasonable.
Then, we show that CO,2 can be approximated similar to the 1-d case. Let F2(x) be the 2-d

approximated Heaviside function, i.e.,

F2(x, y) := F (x) · F (y). (34)

The 2-d O-weighted approximated CDF (ACDF) is defined to be

C̃O,2(x, y) := (F2 ∗ pO,2)(x, y). (35)

The following lemma shows that C̃O,2(x, y) is close to CO,2(x′, y′) for some (x′, y′) close to (x, y).

Lemma 5.2 (Approximation ratio of the 2-d O-weighted ACDF). For any ε > 0, 0 < δ < π/6, let
F2(x, y) := Fd,δ(x) · Fd,δ(y) constructed by Lemma A.8. Then, for any x, y ∈ [−π/3, π/3], the 2-d
O-weighted ACDF C̃O,2(x, y) = (F2 ∗ pO,2)(x, y) satisfies:

CO,2(x− δ, y − δ)− 2ε ≤ C̃O,2(x, y) ≤ CO,2(x+ δ, y + δ) + 2ε. (36)

Proof. By (2) in Lemma A.8, we have

|F (x)−H(x)| ≤ ε ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ], (37)

which implies that for all x, y ∈ [−π + δ,−δ] ∪ [δ, π − δ],
|F2(x, y)−H2(x, y)| ≤ |F (x)F (y)−H(x)H(y)| (38)

= |F (x)F (y)− F (x)H(y) + F (x)H(y)−H(x)H(y)|
≤ F (x)|F (y)−H(y)|+H(y)|F (x)−H(x)|
≤ (F (x) +H(y))ε

≤ 2ε, (39)

where the last step follows from F (x) ∈ [0, 1] by (1) in Lemma A.8. Furthermore, we also have for
x ∈ [−δ, δ], y ∈ [−π + δ,−δ],

|F2(x, y)−H2(x, y)| ≤ |F (x)F (y)−H(x)H(y)| (40)
= |F (x)F (y)| (H(y) = 0)
≤ F (y)

≤ ε. (41)
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Similarly, for x ∈ [−π + δ,−δ], y ∈ [−δ, δ],

|F2(x, y)−H2(x, y)| ≤ ε. (42)

Define FL,2 := F2(x− δ, y − δ) such that

|FL,2(x)−H2(x)| ≤ 2ε ∀(x, y) ∈ [−π + 2δ, 0]× [−π + 2δ, π] (43)
∪ [−π + 2δ, π]× [−π + 2δ, 0]

∪ [2δ, π]× [2δ, π].

For C̃L,2(x, y) := (FL,2 ∗ pO,2)(x, y), we have C̃L,2(x, y) = C̃O,2(x− δ, y − δ).
Let p2 := pO,2. Then, for any x, y ∈ [−π/3, π/3], we have∣∣∣CO,2(x, y)− C̃L,2(x, y)

∣∣∣ =

∣∣∣∣∫ π

−π

∫ π

−π
p2(x− u, y − v)(H2(u, v)− FL,2(u, v))dudv

∣∣∣∣ (44)

≤
∫ π

−π

∫ π

−π
p2(x− u, y − v)|H2(u, v)− FL,2(u, v)|dudv

=

(∫ 0

−π

∫ π

−π
+

∫ π

0

∫ 0

−π
+

∫ π

2δ

∫ π

2δ

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

+

(∫ 2δ

0

∫ π

0
+

∫ π

0

∫ 2δ

0
−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ε ·
(∫ 0

−π

∫ π

−π
+

∫ π

0

∫ 0

−π
+

∫ π

2δ

∫ π

2δ

)
p2(x− u, y − v)dudv

+

(∫ 2δ

0

∫ π

0
+

∫ π

0

∫ 2δ

0
−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ε+

(∫ 2δ

0

∫ π

0
+

∫ π

0

∫ 2δ

0
−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ε+

(∫ 2δ

0

∫ π

0
+

∫ π

0

∫ 2δ

0
−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v)dudv

= 2ε+

(∫ x

x−2δ

∫ y

y−π
+

∫ x

x−π

∫ y

y−2δ
−
∫ x

x−2δ

∫ y

y−2δ

)
p2(u, v)dudv (45)

= 2ε+ CO,2(x, y)− CO,2(x− 2δ, y − 2δ),

where the second step follows from Cauchy-Schwarz inequality, the third step follows from partition-
ing the integration region, the forth step follows from Eq. (43) and the fact that p(x, y) is supported
in [−π/3, π/3]× [−π/3, π/3] and δ < π/6 (see Figure 3 (a)), the fifth step follows from pO,2(x) is a
density function, the last step follows from CO,2(x) is the CDF of pO,2(x) in [−π, π] × [−π, π] and
x, y ∈ [−π/3, π/3] (see Figure 3 (b)).

Hence, we have

C̃L,2(x, y) ≥ CO,2(x, y)− (2ε+ CO,2(x, y)− CO,2(x− 2δ, y − 2δ))

= CO,2(x− 2δ, y − 2δ)− 2ε, (46)

which proves the first inequality:

C̃O,2(x− δ, y − δ) ≥ CO,2(x− 2δ, y − 2δ)− 2ε. (47)
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−π 0 2δ π

(a)

π/3

−π/3
−π/3 π/3x− 2δ x

y − 2δ

y

(b)

Figure 3: (a) is the integral region for Eq. (44), where the integral in regions 1-6 can be upper
bounded by Eq. (43). (b) is the integral region for Eq. (45).

Similarly, we can define FR,2 := F2(x+ δ, y+ δ) and C̃R,2(x, y) := (FR,2 ∗p2)(x, y). We can show
that ∣∣∣CO,2(x, y)− C̃R,2(x, y)

∣∣∣ ≤ 2ε+ CO,2(x+ 2δ, y + 2δ)− CO,2(x, y), (48)

which gives

C̃O,2(x+ δ, y + δ) ≤ CO,2(x+ 2δ, y + 2δ) + 2ε. (49)

The lemma is then proved.

5.2 Estimating the 2-d ACDF

We use the following parameterized quantum circuit to estimate the 2-dO-weighted ACDF C̃O,2(x, y).

|0〉 H • • • W H

|φ0〉 e−it1H O e−it2H

Figure 4: Quantum circuit parameterized by t1, t2. H is the Hadamard gate and W is either I or a
phase gate S.

Lemma 5.3 (Estimate 2-d O-weighted ACDF). For any x, y ∈ [−π/3, π/3], for any ε2, ν ∈ (0, 1),
we can estimate C̃O,2(x, y) with additive error ηε with probability 1 − ν by running the quantum
circuit (Figure 4) O(ε−22 η−2 log(1/ν)) times with maximal evolution time Õ(γ−1) and total expected
evolution time Õ(γ−1ε−12 η−1).
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Proof. C̃O,2(x, y) can be expanded in the following way:

C̃O,2(x, y) = (F2 ∗ p2)(x, y) (50)

=

∫ π

−π

∫ π

−π
F2(x− u, y − v)p2(u, v)dudv

=
∑

|j|≤d,|j′|≤d

∫ π

−π

∫ π

−π
F̂jF̂j′e

ij(x−u)eij
′(y−v)p2(u, v)dudv

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y)

∫ π

−π

∫ π

−π
p2(u, v)e−ijue−ij

′vdudv

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y)

∑
k,k′

c∗kckOk,k′e
−ijτλke−ij

′τλk′

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y) · 〈φ0| e−ijτHOe−ij

′τH |φ0〉 , (51)

To estimate 〈φ0| e−ijτHOe−ij′τH |φ0〉, we use the multi-level Monte Carlo method. Define a
random variables J, J ′ with support {−d, · · · , d} such that

Pr[J = j, J ′ = j′] =
|F̂j ||F̂j′ |
F2

, (52)

where F :=
∑
|j|≤d |F̂j |. Then, let Z := XJ,J ′+iYJ,J ′ ∈ {±1±i}. Define an estimator G2(x; J, J ′, Z)

as follows:

G2(x, y; J, Z) := F2 · Zei(θJ+Jx)ei(θJ′+J ′y), (53)

where θj is defined by F̂j = |F̂j |eiθj , and similar definition for θj′ . Then, we show that G2(x, y; J, Z)
is un-biased:

E[G2(x, y; J, J ′, Z)] =
∑

|j|≤d,|j′|≤d

E
[
(Xj,j′ + iYj,j′)e

i(θj+jx)ei(θj′+j
′y)|F̂j ||F̂j′ |

]
(54)

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
ijxeij

′y · E
[
Xj,j′ + iYj,j′

]
=

∑
|j|≤d,|j′|≤d

F̂jF̂j′e
ijxeij

′y · 〈φ0| e−ijτHOe−ij
′τH |φ0〉

= C̃2(x, y), (55)

where the third step follows from Claim A.1. Moreover, the variance of G2 can be upper-bounded
by:

Var[G2(x, y; J, J ′, Z)] = E[|G2(x, y; J, J ′, Z)|2]− |E[G2(x, y; J, J ′, Z)]|2 (56)

≤ E[|G2(x, y; J, J ′, Z)|2]
= F4 · E[|XJ,J ′ + iYJ,J ′ |2]
= 2F4, (57)

where the third step follows from |ei(θJ+Jx)| = |ei(θJ′+J ′y)| = 1, and the last step follows from
Xj,j′ , Yj,j′ ∈ {±1}.
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By Lemma A.8, we know that F = Õ(1). Hence, we have for all x, y ∈ [−π/3, π/3],

E[G2(x, y)] = C̃O,2(x, y), and Var[G2(x, y)] = Õ(1). (58)

Then, using median-of-means estimator, we can obtain an ε2-additive error estimate of C̃O,2(x, y)
with probability 1− ν using O(ε−22 η−2 log(1/ν)) samples.

The maximal evolution time is 2d = Õ(γ−1). And the expected evolution time for one trial is

τ
∑

|j|,|j′|≤d

(j + j′)
|F̂j ||F̂j′ |
F2

= 2τ
∑
|j|≤d

j
|F̂j |
F = O(τd/ log(d)). (59)

Hence, the total expected evolution time is Õ(γ−1ε−22 η−2).
The lemma is then proved.

λ0 xgood λ1

(a)

λ0

λ0

λ1

λ1

.

xgood

ygood

(b)

Figure 5: (a) shows a point that is good for λ0, where the blue interval is the approximation region
such that C̃O(xgood) is close to C(x) for some x in this interval. (b) shows a good point in the 2-d
case, where in the green square, the 2-d O-weighted CDF CO,2 takes the same value CO,2(λ0, λ0).
And the blue square is the approximation region of (xgood, ygood) such that C̃O,2(xgood, ygood) is
close to some CO,2(x, y) in this region.

Similar to the 1-d case, we can construct a “good” point for (λ0, λ0) via the following claim.

Claim 5.4 (Construct 2-d good point). Let γ be the spectral gap of the Hamiltonian H. Let
xgood := x? + τγ/2 where x? is the output of EstimateGSE(γ/8, τ, η, ν/10) (Algorithm 1). Then,
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(xgood, xgood) is good for (λ0, λ0). In particular, for any ε ∈ (0, 1), if the approximation error of
F (x) is set to be εη, then ∣∣∣C̃O,2(xgood, xgood)− CO,2(λ0, λ0)

∣∣∣ ≤ 2εη. (60)

Proof. By Claim 4.1, we know that xgood is good for λ0, i.e., [xgood − δ, xgood + δ] is contained in
[λ0, λ1). It also holds in the 2-d case for (xgood, xgood). Then, by Lemma 5.3, we have

CO,2(xgood − δ, xgood − δ)− 2εη ≤ C̃O,2(xgood, xgoody) ≤ CO,2(xgood + δ, xgood + δ) + 2εη. (61)

The claim then follows from CO,2(x, y) = CO,2(λ0, λ0) for any (x, y) ∈ [λ0, λ1)× [λ0, λ1).

5.3 Putting it all together

The main algorithm for the ground state property estimation will first estimate the ground state
energy λ0 and the overlap p0, which are described in Section 4.1. Then, by Lemma 5.3 and Claim 5.4,
the weighted expectation p0O0 can also be estimated. Hence, we will obtain an estimate for O0 =
〈ψ0|O |ψ0〉.

Algorithm 3 Ground State Property Estimation (General Case)
1: procedure EstimateGSProp(ε, τ, η, γ, ν)
2: δ ← O(τγ), d← O(δ−1 log(δ−1ε−1η−1))
3: for j ← −d, . . . , d do
4: Compute F̂j := F̂d,δ,j and θj
5: end for
6: . Estimate the ground state energy
7: x? ← EstimateGSE(γ/8, τ, η, ν/10)
8: xgood ← x? + τγ/2
9: . Generate samples from the Hadamard test circuits

10: B ← O(log(1/ν)), K ← Õ(ε−2)
11: for k ← 1, . . . , BK do
12: Sample (Zk, Jk) from the quantum circuit (Figure 1)
13: Sample (Z ′′k , J

′′
k,1, J

′′
k,2) from the quantum circuit (Figure 4)

14: end for
15: . Estimate p0
16: for i← 1, . . . , B do
17: Gi ← 1

K

∑K
j=1G(xgood;Z(i−1)K+j , J(i−1)K+j)

18: end for
19: p0 ← median(G1, . . . , GB)
20: . Estimate p0O0

21: for i← 1, . . . , B do
22: G

′′
i ← 1

K

∑K
j=1G2(xgood, xgood;Z ′′(i−1)K+j , J

′′
(i−1)K+j,1, J

′′
(i−1)K+j,2) . Eq. (53)

23: end for
24: p0O0 ← median(G

′′
1, . . . , G

′′
B)

25: return p0O0/p0
26: end procedure
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Proof of Theorem 5.1. We first analyze the estimation error of Algorithm 3. By Lemma 4.2, p0
(Line 19) has additive error at most O(ηε). By Lemma 5.3 and Claim 5.4, p0O0 (Line 24) has
additive error at most O(ηε). Then, by a similar error propagation analysis in Theorem 4.7, we get
that ∣∣∣∣p0O0

p0
−O0

∣∣∣∣ ≤ O(ε). (62)

For the success probability, Algorithm 3 has three components: estimate ground state energy,
estimate p0, and estimate p0O0. By our choice of parameters, each of them will fail with probability
at most ν/3. Hence, Algorithm 3 will succeed with probability at least 1− ν.

The maximal evolution time and the total expected evolution time follows from Theorem 3.1,
Lemma 4.2, and Lemma 5.3.

6 Handling non-unitary observables

One may notice that Algorithm 3 works only for unitary observables because it needs to use the
circuit in Figure 4 to estimate 〈φ0| e−it2HOe−it1H |φ0〉 for certain t1, t2 ∈ R, in which controlled-
O must be a unitary operation. In this section, we show that under reasonable assumptions this
algorithm can be modified to estimate the ground state property 〈ψ0|O |ψ0〉 where O is a general
observable.

Before we present this result, one may wonder why it is necessary. After all, we can always
decompose O into a linear combination of Pauli strings O =

∑
~sw~sP~s, and use Algorithm 3 to

estimate each term µ~s := 〈ψ0|P~s |ψ0〉 individually, and return
∑

~sw~sµ~s as the result. While this
strategy works in principle, it might be not efficient enough to be practical, depending on the weights
w~s’s of Pauli strings in the linear expansion of O.

Alternatively, one can fix the issue of Algorithm 3 by designing a procedure for estimating
〈φ0| e−it2HOe−it1H |φ0〉 for arbitrary non-unitary O. Such quantities are utilized in the same way as
before. We have followed this approach and found that it is possible when there is a block-encoding
of O. Namely, suppose O is an n-qubit observable with ‖O‖ ≤ 1 and U is an (n+m)-qubit unitary
operator such that

(〈0m| ⊗ I)U(|0m〉 ⊗ I) = α−1O (63)

for some α ≥ ‖O‖. Then we can still perform Hadamard test for U to estimate 〈φ0| e−it2HOe−it1H |φ0〉
for arbitrary t1, t2 ∈ R. The main theorem of this section is stated below:

Theorem 6.1 (Ground state property estimation with block-encoded observable). Suppose p0 ≥ η
for some known η and the spectral gap of the Hamiltonian H is at least γ. Suppose we have access
to the α-block-encoding of the observable O. For any ε, ν ∈ (0, 1), there exists an algorithm for
estimating the ground state property 〈ψ0|O |ψ0〉 within additive error at most ε with probability at
least 1− ν, such that:

1. the expected total evolution time is Õ(γ−1ε−2η−2α2),

2. the maximal evolution time is Õ(γ−1).

Proof sketch of Theorem 6.1. The algorithm for handling non-unitary block-encoded observables is
quite similar to Algorithm 3 for handling unitary observables, except that it relies on a different
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procedure to estimate 〈φ0| e−it2HOe−it1H |φ0〉 for arbitrary t1, t2 ∈ R. Here we briefly describe this
procedure and defer the detailed analysis to Appendix B.

Let C-V := |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ V be the controlled-V operation for arbitrary unitary operator
V . Let |φ0〉 be an arbitrary n-qubit state. Consider the following procedure (as illustrated in Figure
6:

|0〉 H • • • W H

|0m〉
U

|φ0〉 e−it1H e−it2H

Figure 6: Quantum circuit parameterized by t1, t2. H is the Hadamard gate and W is either I or a
phase gate S. U is the block-encoding of the non-unitary observable O.

1. Prepare the state |0〉 |0m〉 |φ0〉.

2. Apply a Hadamard gate on the first register.

3. Apply a C-e−iHt1 on the first and third registers.

4. Apply C-U on the current state, obtaining

1√
2

(
|0〉 |0m〉 |φ0〉+ |1〉U |0m〉 e−iHt1 |φ0〉

)
. (64)

5. Measure the second register in the standard basis. If the outcome is not 0m, then this procedure
fails; otherwise, continue. The probability of this step succeeding is

psucc =
1 + α−2 〈φ0| eiHt1O2e−iHt1 |φ0〉

2
, (65)

and when this event happens, the state becomes

1√
2psucc

[
|0〉 |φ0〉+ α−1 |1〉Oe−iHt1 |φ0〉

]
. (66)

6. Apply a C-e−iHt2 on the first and third registers. The state becomes

1√
2psucc

[
|0〉 |φ0〉+ α−1 |1〉 e−iHt2Oe−iHt1 |φ0〉

]
. (67)

7. Apply W = I or phase gate S on the first register.

8. Apply a Hadamard gate on the first register.

19



9. Measure the first register in the standard basis. Then if W = I, the (conditional) probability
of getting outcome 0 is

P[0|succ] =
psucc + α−1 Re[〈φ0| e−iHt2Oe−iHt1 |φ0〉]

2psucc
; (68)

if W = S, this probability is

P[0|succ] =
psucc − α−1 Im[〈φ0| e−iHt2Oe−iHt1 |φ0〉]

2psucc
. (69)

Now we define two random variables X and Y as follows. First, we run the above procedure
with W = I in step 7. If step 5 fails, X = 0; otherwise, if the measurement outcome is 0 or 1
in step 9, then X = α or −α, respectively. One can show that X is an unbiased estimator of
Re[〈φ0| e−iHt2Oe−iHt1 |φ0〉], i.e.

E[X] = Re[〈φ0| e−iHt2Oe−iHt1 |φ0〉]. (70)

Y is defined similarly. We run the above procedure with W = S in step 7. If step 5 fails, Y = 0;
otherwise, if the measurement outcome is 1 or 0 in step 9, then Y = α or −α, respectively. Then Y
is an unbiased estimator of Im[〈φ0| e−iHt2Oe−iHt1 |φ0〉], i.e.

E[Y ] = Im[〈φ0| e−iHt2Oe−iHt1 |φ0〉]. (71)

It follows that Z := X + iY is an unbiased estimator of 〈φ0| e−iHt2Oe−iHt1 |φ0〉, i.e.

E[Z] = 〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (72)

Note that |Z|2 = |X|2 + |Y |2 ≤ 2α2 with certainty.
Equipped with the above method for estimating 〈φ0| e−iHt2Oe−iHt1 |φ0〉 for arbitrary t1, t2 ∈ R,

we can now use the same strategy as in Lemma 5.3 to estimate C̃O,2(x, y). The other components
of Algorithm 3 remain intact. The analysis of this modified algorithm is almost the same as before,
except that now we have

Var[G2(x, y)] = Õ(α2). (73)

As a consequence, compared to Theorem 5.1, the total evolution time of this modified algorithm is
larger by a factor of O(α2), while its maximal evolution time is of the same order.

7 Applications

In this section, we discuss some applications of our ground state property estimation algorithm.

7.1 Charge density

The primary application of the technique is the estimation of ground state properties of physical
systems. Here we describe how to compute the charge density of a molecule, which can be used to
compute properties like electric dipole moments of a molecule [RGM+21]. From a second-quantized
representation of the electronic system (assuming fixed positions of the nuclear positions), the charge
density is determined from the one-particle reduced density matrix as,

ρ(~r) = −e
∑
p,q

Dp,qφp(~r)φq(~r), (74)
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where e is the electric constant, Dp,q is the one-electron reduced density matrix (1RDM) of the
ground state, and φq(~r) are the basis wave functions chosen for the second-quantized representation
of the electronic system [HJO14]. The 1RDM of the ground state is a matrix of properties of the
ground state with each entry defined as

Dp,q = 〈ψ0| a†paq |ψ0〉 , (75)

where ap are annihilation operators. The operators involved in the 1RDM can each be expressed as
a linear combination of unitary operators using the Majorana representation a†p = 1

2(γ2p−1 + iγ2p),
where the γk are hermitian and unitaryi,

Dp,q =
1

4
(〈ψ0| γ2p−1γ2q−1 |ψ0〉+ i 〈ψ0| γ2p−1γ2q |ψ0〉 − i 〈ψ0| γ2pγ2q−1 |ψ0〉 − 〈ψ0| γ2pγ2q |ψ0〉) . (76)

Accordingly, we may use the method of Section 5 to estimate each entry of the 1RDM and then
obtain the charge density function of the ground state. As a point of comparison, we could al-
ternatively use the variational quantum eigensolver algorithm to prepare an approximation to the
ground state and then directly estimate each of the Pauli expectation values. However, there is
no guarantee on whether a target accuracy for the ground state approximation can be achieved.
Remarkably, the methods introduced in this paper can be used to ensure a target accuracy in the
estimation regardless of the quality of ground state approximation, though possibly at the cost of
an increase in runtime.

7.2 Quantum linear system solver

In the seminal [HHL09] paper, one of the motivations of solving linear systems using quantum
computers is that in many cases, we only need to know 〈x|M |x〉, where |x〉 is the solution of a
linear system A |x〉 = |b〉, and M is a linear operator. For example, in quantum mechanics, many
features of |x〉 can be extracted in this way, including normalization, moments, etc. One approach
to solve this problem is first solving the linear system using any quantum linear system solver
[HHL09, CKS17, CGJ18, GSLW19] to obtain the state |x〉 and then performing the measurement
of M . However, a shortcoming of this method is that most of the quantum linear system solvers
require deep quantum circuits. And hence, the needed quantum resources may not be accessible in
the near future.

Recently, a few quantum algorithms [BPLC+19, HBR19, SSO19] were developed to solve linear
systems of equations by encoding such a system into an effective Hamiltonian

HG := A†(I − |b〉 〈b|)A, (77)

whose ground state corresponds to the solution vector |x〉. We can combine this idea with our ground
state property estimation algorithm to get a low-depth algorithm for estimating the properties
of linear system solution. More specifically, suppose we can simulate the Hamiltonian HG for
some specified time and we know the normalization factor τ such that the eigenvalues of τHG

are in [−π/3, π/3]. For the operator M , we can assume that M can be decomposed into a linear
combination of Pauli operatorsM =

∑L
`=1 c`σ`, or we assume thatM is given in the block-encoding

form. The estimation algorithm has two steps:
iTo implement this application on a quantum computer we must represent the unitaries as operations on qubits.

For an n-electron system, using the Jordan-Wigner or Bravyi-Kitaev transformation [SRL12], each Majorana operator,
and products thereof, can be represented as a Pauli string.
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1. Run a quantum linear system algorithm (e.g. [SSO19], [AL19], or [LT20b]) with constant
precision to prepare an initial state |φ0〉 such that | 〈φ0|x〉|2 is Ω(1).

2. Using |φ0〉 from step 1 as the initial state, run Algorithm 3 to estimate 〈x|M |x〉 within
ε-additive error for any ε ∈ (0, 1).

Step 1 takes Õ(κ) time, where κ is the condition number of A. To analyze the computation cost of
the second step, we need a lower-bound on the spectral gap of HG. Since 〈x|A†(I−|b〉 〈b|)A |x〉 = 0,
we have λ0(HG) = 0. For the second smallest eigenvalue, since HG = A†A−A† |b〉 〈b|A, by Weyl’s
inequality, we have

λ1(HG) ≥ λ0(A
†A)− λ1(A† |b〉 〈b|A)

= λ0(A
†A), (78)

where the second step follows from A† |b〉 〈b|A is rank-1. Due to the normalization, the smallest
(normalized) singular value of A is Ω(κ−1). Hence, we have γ = Ω(κ−2).

By Theorem 5.1, the maximal evolution time of the Hamiltonian will be Õ(κ2). To further
improve the circuit depth, we may apply the gap amplification technique [SB13, SSO19] to quadrat-
ically increase the spectral gap of HG. Consider the following Hamiltonian:

H ′G := σ+ ⊗A†(I − |b〉 〈b|) + σ− ⊗ (I − |b〉 〈b|)A, (79)

where σ± = (X ± iY )/2 are single-qubit (raising and lowering) operators. Then, we have

(H ′G)2 =

[
HG 0
0 (I − |b〉 〈b|)AA†(I − |b〉 〈b|)

]
. (80)

As shown by [SSO19], the eigenvalues of H ′G are{
0, 0,±

√
λ1(HG),±

√
λ2(HG), . . .

}
. (81)

Hence, the spectral gap of H ′G will be Ω(κ−1). However, the smallest eigenvalue of H ′G has multi-
plicity 2, that is, the ground state space is spanned by {|0〉 |x〉 , |1〉 |b〉}. Thus, for the initial state |φ〉
outputted by VQE or QAOA, we should first project it into the space space (|1〉 |b〉)⊥. In this way,
the initial state only has overlap with |0〉 |x〉 and the remaining part of the ground state property
estimation will work.

Then, we can run Algorithm 3 to estimate 〈x|M |x〉. Notice that since we know the ground state
energy of H ′G is zero, we do not need to first estimate the ground state energy using Algorithm 1.
Instead, we directly evaluate the O-weighted CDF at zero.

Therefore, by Theorem 6.1, we immediately get the following result:

Corollary 7.1 (Quantum linear system solution property estimation). For a linear system A |x〉 =
|b〉, suppose we can simulate the Hamiltonian H ′G (Eq. (79)) for some period of time. Furthermore,
suppose A is Hermitian with eigenvalues in [−1,−1/κ] ∪ [1/κ, 1] for κ > 1 and the eigenvalues of
H ′G are in [−π/3, π/3].

Then, for any linear operatorM given by its α-block encoding unitary UM , and for any ε ∈ (0, 1),
the expectation value 〈x|M |x〉 can be estimated with ε-additive error with high probability such that:

• the maximal evolution time of H ′G is Õ(κ).

• the expected total evolution time is Õ(κε−2α2).
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For comparison, the adiabatic algorithm in [SSO19] needs Õ(κ/ε) evolution time of H ′G to obtain
a state that is ε-close to |x〉, which is larger than our maximal evolution time. Moreover, to estimate
〈x|M |x〉, even using amplitude amplification and estimation, they still need Ω(ε−1) copies of the
state to achieve ε-additive error. Hence, their total evolution time will be Õ(κε−2), nearly matching
our result.

8 Discussion and Outlook

We have shown a quantum-classical hybrid algorithm for estimating properties of the ground state of
a Hamiltonian, such that the quantum circuit depth is relatively small and only poly-logarithmically
depends on ε−1. Therefore, the algorithm has a significant advantage in high-accuracy estimation,
and it is possible to be implemented in early fault-tolerant devices. In practice, our algorithm can
solve many important tasks by combining with some initial state preparation methods (e.g., VQE or
QAOA). In this paper, we provide two examples, one in quantum chemistry and another in solving
linear systems. And we believe more applications will be explored in the future.

Another important direction is to improve the total evolution time of our algorithm which
quadratically depends on ε−1. The blowup comes from evaluating the O-weighted CDF in high
precision and a trade-off between maximal evolution time and total evolution time. However, this
does not meet the Heisenberg-limit of linear dependence on ε−1 for generic Hamiltonians [AA17].
In our main result (Theorem 5.1), the ε−2η−2 factor comes from the number of samples needed to
reduce the estimator’s error to O(εη). Amplitude estimation can be used to reduce this number of
samples and the total evolution time. However, this comes at the cost of significantly increasing the
maximal evolution time, which could require large fault-tolerant overheads for reliable implemen-
tation. A strategy to achieve improved performance that is more amenable to early fault tolerant
quantum computers is to use recently introduced “enhanced sampling” techniques [WKJC21]. If λ
characterizes the fidelity decay rate of the circuit as deeper circuits are used, then we would expect
to need a maximal evolution time of O(λ−1γ−1) and an total evolution time of O(λγ−1ε−2η−2).
Note that because this approach incorporates the impact of error into the algorithm, the maximal
evolution time is of no concern. Rather than being a cost that needs monitoring, the maximal evo-
lution time is chosen by the algorithm to minimize the total evolution time. With this, we expect
that as the quality of devices is improved, the performance of the algorithm improves proportionally.
We note that a similar approach can also be applied to improve the total evolution time in [LT21]
from Õ(ε−1η−2) to Õ(λε−1η−2).

This work fits into the paradigm of “beyond the ground state energy” and studies more general
properties of the ground state. Can we go further beyond the ground state? Some prior works have
explored the estimation of such kind of properties of Hamiltonian. For example, Brown, Flammia,
and Schuch [BFS11] studied the density of states. Jordan, Gosset, and Love [JGL10] focused on
the energy of excited states. Gharibian and Sikora [GS15] identified the energy barriers. In general,
for an unknown Hamiltonian, these estimation problems will be hard. An interesting open problem
is, given some prior knowledge of the Hamiltonian, can we design efficient or low-depth quantum
algorithms for estimating Hamiltonian properties beyond ground state?
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A Ground State Energy Estimation

In this section, we review the techniques in [LT20a], which proposed a hybrid quantum/classical
algorithm for estimating the ground state energy of a Hamiltonian. Compared with the algorithms
in previous works, the algorithm in [LT21] uses fewer quantum resources and does not need to access
the block-encoding of the Hamiltonian.

First of all, they assumed that the given initial state |φ0〉ii has a nontrivial overlap with the
ground state of H.

iiIn [LT21], they allowed the initial state to be a mixed state. For simplicity, we still denote it as |φ0〉.
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A.1 Quantum part of the algorithm

Fix j ∈ Z. Suppose we want to estimate <(〈φ0| e−ijτH |φ0〉). Then, we set W = I and define a
random variable Xj as follows:

Xj :=

{
1 if the outcome is 0

−1 if the outcome is 1
.

Since the state before the measurement is

1

2
(|0〉 ⊗ (I + e−ijτH) |φ0〉+ |1〉 ⊗ (I − e−ijτH) |φ0〉), (82)

we have

E[Xj ] = Pr[Xj = 0]− Pr[Xj = 1]

=
1

4
〈φ0| (I + eijτH)(I + e−ijτH) |φ0〉 −

1

4
〈φ0| (I − eijτH)(I − e−ijτH) |φ0〉

=
1

2
〈φ0| (eijτH + e−ijτH) |φ0〉

= <(〈φ0| e−ijτH |φ0〉). (83)

For the imaginary part =(〈φ0| e−ijτH |φ0〉), we can set W to be the phase gate
[
1 0
0 −i

]
and define

the random variable Yj similarly. Then, we have

E[Yj ] = =(〈φ0| e−ijτH |φ0〉). (84)

Therefore, Eqs. (83) and (84) implies the following claim:

Claim A.1 (Estimator of the Hamiltonian expectation). For any j ∈ Z, the random variable
Xj + iYj is an un-biased estimator for 〈φ0| e−ijτH |φ0〉.

A.2 Classical part of the algorithm

Let τ be a normalization factor such that ‖τH‖ ≤ π/3. Suppose the initial state |φ0〉 can be
decomposed in the eigenspace of H as |φ0〉 =

∑
k

√
pk |ψk〉. Let p(x) be the following density

function (spectral measure):

p(x) :=
∑
k

pkδ(x− τλk) ∀x ∈ [−π, π]. (85)

That is, p(x) is the distribution of the state energy with respect to τH after we measure |φ0〉 in the
eigenbasis of H.

Define the 2π-periodic Heaviside function by

H(x) =

{
1 x ∈ [2kπ, (2k + 1)π)

0 x ∈ [(2k − 1)π, 2kπ)
∀k ∈ Z. (86)

Then, we define the 2π-periodic CDF of p as the convolution of H and p:

C(x) := (H ∗ p)(x). (87)
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For any x ∈ [−π/3, π/3], for any w ∈ Z, we have

C(x+ 2wπ) =

∫ π

−π
H(x+ 2wπ − t)p(t)dt (88)

=
∑
k

pk ·
∫ π

−π
H(x+ 2wπ − t)δ(t− τλk)dt

=
∑
k

pk ·H(x+ 2wπ − τλk)

=
∑
k

pk · 1x≥τλk

=
∑

k:λk≤x
pk, (89)

where the first step follows from the definition of convolution, the second step follows from Dirac
delta function’s property, and the third step follows from H has period 2π. We note that C(x) is
right continuous and non-decreasing in [−π/3, π/3].

However, we cannot directly evaluate C(x), but we can approximate it! Define the approximate
CDF (ACDF) as

C̃(x) := (F ∗ p)(x), (90)

where F (x) =
∑
|j|≤d F̂je

ijx is a low Fourier-degree approximation of the Heaviside function H(x)
such that

|F (x)−H(x)| ≤ ε ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. (91)

The construction of F is given by Lemma A.8. Furthermore, the approximation error of C̃(x) is
bounded by

C(x− δ)− ε ≤ C̃(x) ≤ C(x+ δ) + ε, (92)

for any x ∈ [−π/3, π/3], δ ∈ (0, π/6) and ε > 0.

A.2.1 Estimating the ACDF

The goal of this section is to prove Lemma A.2, which constructs an estimator for C̃(x) (defined by
Eq. (90)).

Lemma A.2 (Estimating the ACDF). For any σ > 0, for any x ∈ [−π, π], there exists an un-biased
estimator G(x) for the ACDF C̃(x) with variance at most σ2.

Furthermore, G(x) runs the quantum circuit (Figure 1) O( log
2 d
σ2 ) times with expected total evo-

lution time O( τd log d
σ2 ).
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Proof. C̃(x) can be expanded in the following way:

C̃(x) = (F ∗ p)(x) (93)

=

∫ π

−π
F (x− y)p(y)dy

=
∑
|j|≤d

∫ π

−π
F̂je

ij(x−y)p(y)dy

=
∑
|j|≤d

F̂je
ijx

∫ π

−π
p(y)e−ijydy

=
∑
|j|≤d

F̂je
ijx
∑
k

pke
−ijτλk

=
∑
|j|≤d

F̂je
ijx · 〈φ0| e−ijτH |φ0〉 , (94)

where the third step follows from the Fourier expansion of F (x − y), the fifth step follows from
the property of Dirac’s delta function, and the last step follows from the definition of pk and the
eigenvalues of matrix exponential.

To estimate 〈φ0| e−ijτH |φ0〉, we use the multi-level Monte Carlo method. Define a random
variable J with support {−d, · · · , d} such that

Pr[J = j] =
∣∣∣F̂j∣∣∣ /F , (95)

where F :=
∑
|j|≤d |F̂j |. Then, let Z := XJ + iYJ ∈ {±1 ± i}. Define an estimator G(x; J, Z) as

follows:

G(x; J, Z) := F · Zei(θJ+Jx),

where θj is defined by F̂j = |F̂j |eiθj . Then, we show that G(x; J, Z) is un-biased:

E[G(x; J, Z)] =
∑
|j|≤d

E
[
(Xj + iYj)e

i(θj+jx)|F̂j |
]

=
∑
|j|≤d

F̂je
ijx · E [Xj + iYj ]

=
∑
|j|≤d

F̂je
ijx · 〈φ0| e−ijτH |φ0〉

= C̃(x),

where the third step follows from Claim A.1. Moreover, the variance of G can be upper-bounded
by:

Var[G(x; J, Z)] = E[|G(x; J, Z)|2]− |E[G(x; J, Z)]|2

≤ E[|G(x; J, Z)|2]
= F2 · E[|XJ + iYJ |2]
= 2F2,
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where the third step follows from |ei(θJ+Jx)| = 1, and the last step follows from Xj , Yj ∈ {±1}.
Hence, we can take Ns := 2F2

σ2 independent samples of (J, Z), denoted by {(Jk, Zk)}k∈[Ns] and
compute

G(x) :=
1

Ns

Ns∑
k=1

G(x; Jk, Zk).

Then, we have

E[G(x)] = C̃(x), and Var[G(x)] ≤ σ2.

The expected total evolution time is

Ttot := Nsτ E[|J |] =
2F2

σ2
τ
∑
|j|≤d

|j| · |F̂j |F =
2Fτ
σ2

∑
|j|≤d

|j||F̂j |.

By Lemma A.8, we know that |F̂j | = O(1/|j|). Hence, we have F =
∑
|j|≤dO(1/|j|) = O(log d).

Thus, the number of samples is

Ns = O

(
log2 d

σ2

)
.

And the expected total evolution time is

Ttot = O

(
τd log d

σ2

)
.

The lemma is then proved.

A.2.2 Inverting the CDF

We first define the CDF inversion problem:

Definition A.3 (The CDF inversion problem). For 0 < δ < π/6, 0 < η < 1, find x? ∈ (−π/3, π/3)
such that

C(x? + δ) > η/2, C(x? − δ) < η.

Remark A.4. The condition in Definition A.3 is weaker than η/2 < C(x) < η due to the discontinu-
ity of C(x). For any CDF C(x), such an x? must exist: let a := sup {x ∈ (−π/3, π/3) : C(x) ≤ η/2}
and b := inf {x ∈ (−π/3, π/3) : C(x) ≥ η}. Since C(x) is non-decreasing, we have a ≤ b. And any
x ∈ (a− δ, b+ δ) satisfies the condition in Definition A.3.

Then, we give an algorithm that solves the CDF inversion problem.

Lemma A.5 (Inverting the CDF, Theorem 2 in [LT21]). There exists an algorithm that solves the
CDF inversion problem (Definition A.3) with probability at least 1− ν such that:

1. the number of independent samples of (J, Z) is

O
(
η−2 · (log(ν−1) + log log(δ−1)) · (log(δ−1) + log log(δ−1η−1))2

)
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Algorithm 4 Inverting the CDF
1: procedure InvertCDF(η, δ, {Jk, Zk})
2: xL ← −π/3, XR ← π/3
3: while xR − xL > 2δ do
4: xM ← (xL + xR)/2
5: u← Certify(xM , (2/3)δ, η, {Jk, Zk})
6: if u = 0 then
7: xR ← xM + (2/3)δ
8: else
9: xL ← xM − (2/3)δ

10: end if
11: end while
12: return (xL + xR)/2
13: end procedure

2. the expected total evolution time is

O
(
τη−2 · δ−1 log(δ−1η−1) · (log(δ−1) + log log(δ−1η−1)) · (log(ν−1) + log log(δ−1))

)
3. the maximal evolution time is

O
(
τδ−1 log(δ−1η−1)

)
4. the classical running time is

O
(
η−2 log(δ−1) · (log(ν−1) + log log(δ−1)) · (log(δ−1) + log log(δ−1η−1))2

)
.

Proof. For any x ∈ [−π/3, π/3], at least one of the following conditions will hold:

C(x+ δ) > η/2, or C(x− δ) < η. (96)

Suppose we have a sub-routine Certify(x, δ, η, {Jk, Zk}) such that if C(x+ δ) > η/2, it returns 0;
otherwise, it returns 1.

Then, we can solve the CDF inversion problem via the binary search (Algorithm 4).
In Line 3, xL and xR always satisfy the following conditions:

C(xL) < η, C(xR) > η/2,

which is guaranteed by Certify(xM , (2/3)δ, η, {Jk, Zk}). Then, when the while-loop ends, we have
xR − xL ≤ 2δ. Let x? := (xL + xR)/2 be the output of Algorithm 4. Then, we get that

C(x? + δ) ≥ C(xR) > η/2,

C(x? − δ) ≤ C(xL) < η.

And it is easy to see that Algorithm 4 will call Certify L := O(log(1/δ)) times. Then, by
Lemma A.6 and union bound, Algorithm 4 will be correct with probability at least 1− ν. We note
that different runs of Certify can share a same set of samples {Jk, Zk}, which does not affect
the union bound. Hence, the number of samples and the total evolution time follows directly from
Lemma A.6 and d = O(δ−1 log(δ−1η−1)).
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Algorithm 5 Distinguish the two cases in Eq. (96)
1: procedure Certify(x, η, δ, {Jk, Zk})
2: c← 0, Nb ← Ω(log(1/ν) + log log(1/δ))
3: for 1 ≤ r ≤ Nb do
4: Compute G(x) using {Jk, Zk}k∈[(r−1)Ns+1,rNs] . Lemma A.2
5: if G(x) ≥ (3/4)η then
6: c← c+ 1
7: end if
8: end for
9: return 1c≤Nb/2

10: end procedure

Lemma A.6 (Certify sub-routine). For any ν > 0, there exists an algorithm that distinguishes
the two cases in Eq. (96) for any x ∈ [−π/3, π/3] with probability at least 1−O(ν/L) using

O
(
η−2 log2(d)(log(1/ν) + log log(1/δ))

)
independent samples of (J, Z), and total evolution time

O
(
η−2τd log(d)(log(1/ν) + log log(1/δ))

)
in expectation.

Proof. To decide which one of the conditions holds for x, we can estimate the ACDF C̃(x). If we
take ε = η/8 in Lemma A.8, then the constructed ACDF satisfies

C(x− δ)− η/8 ≤ C̃(x) ≤ C(x+ δ) + η/8.

Thus,

C̃(x) > (5/8)η ⇒ C(x+ δ) > η/2,

C̃(x) < (7/8)η ⇒ C(x− δ) < η.

Then, we can distinguish C̃(x) > (5/8)η or C̃(x) < (7/8)η by the estimator in Lemma A.2.
In Algorithm 5, we compute the estimator G(x) Nb times independently, where each time we

use Ns samples of (J, Z). We note that an error occurs when C̃(x) > (7/8)η but G(x) < (3/4)η,
or C̃(x) < (5/8)η but G(x) > (3/4)η (when (5/8)η ≤ C̃(x) ≤ (7/8)η, any output is correct). By
Chebyshev’s inequality, we have

Pr[G(x) has an error] ≤ Pr

[
G(x) <

3

4
η
∣∣∣ C̃(x) >

7

8
η

]
+ Pr

[
G(x) >

3

4
η
∣∣∣ C̃(x) <

5

8
η

]
≤ 2 · σ2

η2/64

≤ 1

4
,

if we take σ2 = O(η2) in Lemma A.2.
Then, by the Chernoff bound, we have

Pr[Certify makes an error] ≤ exp(−Ω(Nb)) ≤ ν/L,
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if we take Nb := Ω(log(L/ν)) = Ω(log(1/ν) + log log(1/δ)). Thus, the total number of samples is

NbNs = O
(
η−2 log2(d)(log(1/ν) + log log(1/δ))

)
,

and the expected total evolution time is

O
(
η−2τd log(d)(log(1/ν) + log log(1/δ))

)
,

which complete the proof of the lemma.

A.2.3 Estimating the ground state energy

Corollary A.7 (Ground state energy estimation, Corollary 3 in [LT21]). If p0 ≥ η for some known
η, then with probability at least 1 − ν, the ground state energy λ0 can be estimated within additive
error ε, such that:

1. the number of times running the quantum circuit (Figure 1) is Õ(η−2).

2. the expected total evolution time is Õ(ε−1η−2).

3. the maximal evolution time is Õ(ε−1).

4. the classical running time is Õ(η−2).

Proof. Suppose we can solve the CDF inversion problem (Definition A.3) for δ = τε and η, i.e., we
find an x? such that

C(x? + τε) > η/2 > 0, C(x? − τε) < η ≤ p0.

Since C(x) cannot take value between 0 and p0, we have

x? + τε ≥ τλ0, x? − τε < τλ0,

which is

|x?/τ − λ0| ≤ ε.

The costs of this algorithm follows from Lemma A.5.

A.3 Low Fourier degree approximation of the Heaviside function

We construct the low degree approximation of the Heaviside function in this section.iii

Lemma A.8 (Constructing low degree approximation of H). Let H(x) be the 2π-period Heaviside
function (Eq. (86)). For any δ ∈ (0, π/2) such that tan(δ/2) ≤ 1 − 1/

√
2, there exists a d =

O(δ−1 log(δ−1ε−1)) and a 2π-period function Fd,δ(x) of the form:

Fd,δ(x) =
1√
2π

d∑
j=−d

F̂d,δ,j · eijx (97)

such that
iiiThe construction in [LT21] is not enough to prove Lemma A.9 because the range of Fd,δ is [−ε/2, 1 + ε] while

Lemma A.9 requires the range to be [0, 1]. We fix this issue in Lemma A.8.
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1. Fd,δ(x) ∈ [0, 1] for all x ∈ R.

2. |Fd,δ(x)−H(x)| ≤ ε for x ∈ [−π + δ,−δ] ∪ [δ, π − δ].

3. |F̂d,δ,j | = Θ(1/|j|) for j 6= 0.

Proof. We first construct F ′d,δ(x) by mollifying the Heaviside function withMd,δ(x) in Lemma A.10:

F ′d,δ(x) := (Md,δ ∗H)(x) =

∫ π

−π
Md,δ(y)H(x− y)dy. (98)

We can verify that F ′d,δ has Fourier degree at most d. It follows from the Chebyshev polynomial
Td(x) is of degree d. Hence, the Fourier coefficients of Md,δ(x):

M̂d,δ,j =
1√
2π

∫ π

−π
Md,δ(x)e−ijxdx 6= 0 (99)

only if j ∈ {−d, . . . , d}. Since Fd,δ is a convolution of Md,δ and H, we have

F̂ ′d,δ,j =
√

2πM̂d,δ,jĤj ∀|j| ≤ d. (100)

Then, we define

Fd,δ(x) :=
1√
2π

d∑
j=−d

F̂d,δ,j · eijx, (101)

where

F̂d,δ,j =

 1
1+(5/4)ε

(
F̂ ′d,δ,j +

√
2πε/4

)
if j = 0,

1
1+(5/4)ε F̂

′
d,δ,j otherwise.

(102)

It is easy see that

Fd,δ(x) =
F ′d,δ(x) + ε/4

1 + (5/4)ε
∀x ∈ R. (103)

Then, we will show that taking d = O(δ−1 log(δ−1ε−1)) is enough to satisfy (1)-(3).

Part (1): We first compute the range of F ′d,δ(x):

F ′d,δ(x) ≤
∫ π

−π
|Md,δ(y)|dy ≤ 1 +

4π

Nd,δ
, (104)

where the second step follows from (2) in Lemma A.10. On the other hand,

F ′d,δ(x) ≥ − 1

Nd,δ

∫ π

−π
H(y)dy =

−π
Nd,δ

.

Hence, if we take d = O(δ−1 log(δ−1ε−1)) such that

Nd,δ ≥ C1e
dδ/
√
2

√
δ

d
· erf(C2

√
dδ) ≥ 4π

ε
(105)

holds, we will have

−ε/4 ≤ F ′d,δ ≤ 1 + ε. (106)

Therefore, for all x ∈ R,

Fd,δ(x) =
F ′d,δ(x) + ε/4

1 + (5/4)ε
∈ [0, 1]. (107)
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Part (2): The approximation error of F ′d,δ is

|F ′d,δ(x)−H(x)| ≤
∣∣∣∣∫ π

−π
Md,δ(y)(H(x− y)−H(x))dy

∣∣∣∣
≤
∫ π

−π
|Md,δ(y)||H(x− y)−H(x)|dy, (108)

where the first step follows from (2) in Lemma A.10, and the second step follows from the triangle
inequality.

Fix x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. If y ∈ (−δ, δ), then H(x− y) = H(x) and∫ δ

−δ
|Md,δ(y)||H(x− y)−H(x)|dy = 0. (109)

If |y| ≥ δ, by (1) in Lemma A.10, we have |Md,δ| ≤ 1
Nd,δ . Since |H(x− y)−H(x)| ≤ 1, we have(∫ −δ

−π
+

∫ π

δ

)
|Md,δ(y)||H(x− y)−H(x)|dy ≤ 2π

Nd,δ
≤ ε/2, (110)

where the last step follows from Eq. (105). Therefore,

|F ′d,δ(x)−H(x)| ≤ ε/2 ∀|x| ∈ [δ, π − δ]. (111)

Thus,

|Fd,δ(x)−H(x)| =
∣∣∣∣∣F ′d,δ(x) + ε/4

1 + (5/4)ε
−H(x)

∣∣∣∣∣ (112)

≤ |F ′d,δ(x)−H(x)|+ (5/4)ε

1 + (5/4)ε
|F ′d,δ(x)|+ ε/4

1 + (5/4)ε

≤ ε/2 +
(5/4)ε

1 + (5/4)ε
(1 + ε) +

ε/4

1 + (5/4)ε

≤ 2ε, (113)

where the second step follows from the triangle inequality, the third step follows from Eq. (106).
By scaling for ε, we can make the approximation error at most ε.

Part (3): Since |F̂ ′d,δ,j | =
√

2π|M̂d,δ,j ||Ĥj |, we first bound |M̂d,δ,j |:∣∣∣M̂d,δ,j

∣∣∣ ≤ 1√
2π

∫ π

−π
|Md,δ(x)|dx ≤ 1√

2π

(
1 +

4π

Nd,δ

)
≤ 1 + ε√

2π
, (114)

where the second step follows from (2) in Lemma A.10 and the last step follows from Eq. (105).
For |Ĥj |, if j 6= 0, we have

Ĥj =
1√
2π

∫ π

−π
H(x)e−ijxdx =

1√
2π

∫ π

0
e−ijxdx =

{ √
2

i
√
πj

if j is odd,

0 if j is even.
(115)

Hence, for j 6= 0,

|F̂ ′d,δ,j | ≤
√

2π · 1 + ε√
2π
·
√

2

π

1

|j| =
1 + ε√
π/2|j|

. (116)
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Then, by definition, we get that

|F̂d,δ,j | ≤
1 + ε√

π/2(1 + (5/4)ε)|j|
= Θ(1/|j|). (117)

The proof of the lemma is completed.

The following lemma shows the approximation ratio of the ACDF C̃(x) constructed from the
low degree approximated Heaviside function F (x) by Lemma A.8.

Lemma A.9 (Approximation ratio of the ACDF). For any ε > 0, 0 < δ < π/6, let F (x) := Fd,δ(x)

constructed by Lemma A.8. Then, for any x ∈ [−π/3, π/3], the ACDF C̃(x) = (F ∗ p)(x) satisfies:

C(x− δ)− ε ≤ C̃(x) ≤ C(x+ δ) + ε.

Proof. By (2) in Lemma A.8, we have

|F (x)−H(x)| ≤ ε ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. (118)

Define FL := F (x− δ) such that

|FL(x)−H(x)| ≤ ε ∀x ∈ [−π + 2δ, 0] ∪ [2δ, π]. (119)

For C̃L(x) := (FL ∗ p)(x), we have C̃L(x) = C̃(x− δ), and for x ∈ [−π/3, π/3],

|C(x)− C̃L(x)| =
∣∣∣∣∫ π

−π
p(x− y)(H(y)− FL(y))dy

∣∣∣∣ (120)

≤
∫ π

−π
p(x− y)|H(y)− FL(y)|dy

=

(∫ 0

−π
+

∫ π

2δ

)
p(x− y)|H(y)− FL(y)|dy +

∫ 2δ

0
p(x− y)|H(y)− FL(y)|dy

≤ ε ·
(∫ 0

−π
+

∫ π

2δ

)
p(x− y)dy +

∫ 2δ

0
p(x− y)|H(y)− FL(y)|dy

≤ ε+

∫ 2δ

0
p(x− y)|H(y)− FL(y)|dy

≤ ε+

∫ 2δ

0
p(x− y)dy

= ε+

∫ x

x−2δ
p(y)dy

= ε+ C(x)− C(x− 2δ), (121)

where the second step follows from Cauchy-Schwarz inequality, the forth step follows from Eq. (119),
the fifth step follows from p(x) is a density function, the sixth step follows from H(y) = 1 and
FL(y) ∈ [0, 1] for y ∈ [0, 2δ], the last step follows from C(x) is the CDF of p(x) in [−π, π].

Hence, we have

C̃L(x) ≥ C(x)− (ε+ C(x)− C(x− 2δ)) = C(x− 2δ)− ε, (122)

which proves the first inequality:

C̃(x− δ) ≥ C(x− 2δ)− ε. (123)
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Similarly, we can define FR := F (x+ δ) and C̃R(x) := (FR ∗ p)(x). We can show that

|C(x)− C̃R(x)| ≤ ε+ C(x+ 2δ)− C(x), (124)

which gives

C̃(x+ δ) ≤ C(x+ 2δ) + ε. (125)

The lemma is then proved.

A.3.1 Technical lemma

Lemma A.10 (Mollifier, Lemma 5 in [LT21]). Define Md,δ(x) to be

Md,δ :=
1

Nd,δ
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
(126)

where Td(x) is the d-th Chebyshev polynomial of the first kind, and

Nd,δ :=

∫ π

−π
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
dx. (127)

Then

1. |Md,δ(x)| ≤ 1
Nd,δ for x ∈ [−π,−δ] ∪ [δ, π], and Md,δ(x) ≥ 1

Nd,δ for x ∈ [−δ, δ].

2.
∫ π
−πMd,δ(x)dx = 1, 1 ≤

∫ π
−π |Md,δ(x)|dx ≤ 1 + 4π

Nd,δ .

3. When tan(δ/2) ≤ 1− 1/
√

2, we have

Nd,δ ≥ C1e
dδ/
√
2

√
δ

d
· erf(C2

√
dδ), (128)

for some universal constant C1, C2.

The proof can be found in Appendix A in [LT21], and we omit it here.

B Technical details of the Hadamard test of block-encoded observ-
able

In this section, we give detailed analysis of the Hadamard test for block-encodings which plays a
crucial role in the proof of Theorem 6.1.

We first note that the quantum state before the final measurements is as follows:

|φ1〉 =

{
1√
2

(
|+〉 |0m〉 |φ0〉+ |−〉 (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m〉 |φ0〉

)
if W = I,

1√
2

(
|+〉 |0m〉 |φ0〉+ i |−〉 (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m〉 |φ0〉

)
if W = S.

(129)
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Case 1: W = I We measure the first two registers. If the outcome is (0, 0m), the (un-normalized)
remaining state is:

(〈0| 〈0m| ⊗ I)
1√
2

(
|+〉 |0m〉 |φ0〉+ |−〉 (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m〉 |φ0〉

)
=

1

2
|φ0〉+

1

2α
e−iHt2Oe−iHt1 |φ0〉 (130)

Hence, this event happens with the following probability:

Pr[the outcome is (0, 0m)|W = I] (131)

= 〈φ0|
(

1

2
I +

1

2α
eiHt1O†eiHt2

)(
1

2
I +

1

2α
e−iHt2Oe−iHt1

)
|φ0〉

=
1

4

(
1 +

1

α
〈φ0| eiHt1O†eiHt2 |φ0〉+

1

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉+

1

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
.

(132)

Similarly, if the outcome is (1, 0m), the remaining (un-normalized) state is

1

2
|φ0〉 −

1

2α
e−iHt2Oe−iHt1 |φ0〉 , (133)

and the probability is

Pr[the outcome is (1, 0m)|W = I]

=
1

4

(
1− 1

α
〈φ0| eiHt1O†eiHt2 |φ0〉 −

1

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉+

1

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
.

(134)

Hence, the expectation of X is

E[X] = α · (Pr[the outcome is (0, 0m)|W = I]− Pr[the outcome is (1, 0m)|W = I]) (135)

=
1

2
(〈φ0| e−iHt2Oe−iHt1 |φ0〉+ 〈φ0| eiHt1O†eiHt2 |φ0〉)

=
1

2
(〈φ0| e−iHt2Oe−iHt1 |φ0〉+ 〈φ0| e−iHt2Oe−iHt1 |φ0〉)

= < 〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (136)

Case 2: W = S Similar to the case 1, we have

Pr[the outcome is (0, 0m)|W = S] (137)

= 〈φ0|
(

1

2
I − i

2α
eiHt1O†eiHt2

)(
1

2
I +

i

2α
e−iHt2Oe−iHt1

)
|φ0〉

=
1

4

(
1− i

α
〈φ0| eiHt1O†eiHt2 |φ0〉+

i

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉+

1

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
.

(138)

And

Pr[the outcome is (1, 0m)|W = S]

=
1

4

(
1 +

i

α
〈φ0| eiHt1O†eiHt2 |φ0〉 −

i

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉+

1

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
.

(139)
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Hence,

E[Y ] = α · (Pr[the outcome is (1, 0m)|W = S]− Pr[the outcome is (0, 0m)|W = S]) (140)

=
i

2
(−〈φ0| e−iHt2Oe−iHt1 |φ0〉+ 〈φ0| e−iHt2Oe−iHt1 |φ0〉)

= = 〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (141)

Therefore,

E[X + iY ] = 〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (142)

B.1 Generalized Hadamard test

In this subsection, we study the generalized Hadamard test for block-encodings and we will show that
the estimator’s variance can be reduced by replacing the first Hadamard gate with an α-dependent
single-qubit gate.

Suppose W = I and we replace the first Hadamard gate with the following single-qubit gate:

G(a, b, θ) :=

[
a b

−eiθb eiθa

]
, (143)

where θ ∈ R, a, b ∈ C with |a|2 + |b|2 = 1.
Then, we have

|0〉 |0m〉 |φ0〉
G(a,b,θ)−−−−−→ a |0〉 |0m〉 |φ0〉 − eiθb |1〉 |0m〉 |φ0〉
C-e−iHt1−−−−−−→ a |0〉 |0m〉 |φ0〉 − eiθb |1〉 (I ⊗ e−iHt1) |0m〉 |φ0〉

C-U−−→ a |0〉 |0m〉 |φ0〉 − eiθb |1〉U(I ⊗ e−iHt1) |0m〉 |φ0〉
C-e−iHt2−−−−−−→ a |0〉 |0m〉 |φ0〉 − eiθb |1〉 (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m〉 |φ0〉
G(p,q,ρ)−−−−−→ a(p |0〉 − eiρq |1〉) |0m〉 |φ0〉 − eiθb(q |0〉+ eiρp |1〉)(I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m〉 |φ0〉

=: |φ1〉 .

Hence, the un-normalized remaining state after the measurement with outcome (0, 0m) is:

(〈0| 〈0m| ⊗ I) |φ1〉 = ap |φ0〉 −
eiθbq

α
e−iHt2Oe−iHt1 |φ0〉 . (144)

It implies that

Pr[the outcome is (0, 0m)|W = I] (145)

= 〈φ0|
(
apI − e−iθbq

α
eiHt1O†eiHt2

)(
apI − eiθbq

α
e−iHt2Oe−iHt1

)
|φ0〉

= |a|2|p|2 +
|b|2|q|2
α2

〈φ0| eiHt1O†Oe−iHt1 |φ0〉

−e
iθabpq

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉 −

e−iθabpq

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉. (146)
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On the other hand, the un-normalized state for the outcome (1, 0m) is

(〈1| 〈0m| ⊗ I) |φ1〉 = −eiρaq |φ0〉 −
ei(θ+ρ)bp

α
e−iHt2Oe−iHt1 |φ0〉 , (147)

and the probability is

Pr[the outcome is (1, 0m)|W = I] (148)

= 〈φ0|
(
−e−iρaqI − e−i(θ+ρ)bp

α
eiHt1O†eiHt2

)(
−eiρaqI − ei(θ+ρ)bp

α
e−iHt2Oe−iHt1

)
|φ0〉

= |a|2|q|2 +
|b|2|p|2
α2

〈φ0| eiHt1O†Oe−iHt1 |φ0〉

+
eiθabpq

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉+

e−iθabpq

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉 (149)

If we choose |p| = |q| = 1√
2
, then we have

Pr[the outcome is (1, 0m)|W = I]− Pr[the outcome is (0, 0m)|W = I]

= <4eiθabpq

α
〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (150)

Notice that to make the Hadamard test work, we need the coefficient 4eiθabpq
α to be a real or an

imaginary number.
Now, we show how to choose the parameters to minimize the variance. Without loss of generality,

we may assume a, b ∈ (0, 1) such that a2 + b2 = 1 and use p, q to cancel the phase factor, i.e.,
eiθabpq = 1

2ab. It gives that:

Pr[the outcome is (1, 0m)|W = I]− Pr[the outcome is (0, 0m)|W = I]

=
2ab

α
< 〈φ0| e−iHt2Oe−iHt1 |φ0〉 , (151)

and

Pr[the outcome is (1, 0m)|W = I] + Pr[the outcome is (0, 0m)|W = I]

= a2 +
b2

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉 (152)

Now, define the random variable as follows:

X :=


α
2ab if the outcome is (1, 0m),

− α
2ab if the outcome is (0, 0m),

0 otherwise.
(153)

Then, we have

E[X] = < 〈φ0| e−iHt2Oe−iHt1 |φ0〉 . (154)

And we have

Var[X] = E[X2]− E[X]2

=
α2

4a2b2

(
a2 +

b2

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
−
(
< 〈φ0| e−iHt2Oe−iHt1 |φ0〉

)2
. (155)

40



The second term is fixed for any parameters. And for the first term, we have

α2

4a2b2

(
a2 +

b2

α2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉

)
=

α2

4b2
+

1

4a2
〈φ0| eiHt1O†Oe−iHt1 |φ0〉 (156)

=
α2

4(1− a2) +
‖Oe−iHt1 |φ0〉 ‖2

4a2

≥ 1

4
(α+ ‖Oe−iHt1 |φ0〉 ‖)2, (157)

where the minimizer is at a :=

√
‖Oe−iHt1 |φ0〉‖

α+‖Oe−iHt1 |φ0〉‖
. However, since we do not know the value of

‖Oe−iHt1 |φ0〉 ‖, there are two approaches to resolve this issue: (1) use another quantum circuit to
estimate ‖Oe−iHt1 |φ0〉 ‖ and then set the parameters; (2) just take a :=

√
1

α+1 . Notice that when

the first gate is the Hadamard gate, i.e., a = 1√
2
, we have

Var

[
X
∣∣∣ a =

1√
2

]
=

1

2
(α2 + ‖Oe−iHt1 |φ0〉 ‖2). (158)

When a =
√

1
α+1 , we have

Var

[
X
∣∣∣ a =

1√
α+ 1

]
=

1

4
α(α+ 1) +

1

4
‖Oe−iHt1 |φ0〉 ‖2(α+ 1) (159)

=
1

2
(α2 + ‖Oe−iHt1 |φ0〉 ‖2)−

1

4
(α− 1)(α− ‖Oe−iHt1 |φ0〉 ‖2)

≤ Var

[
X
∣∣∣ a =

1√
2

]
, (160)

where the last step follows from α ≥ 1 and ‖Oe−iHt1 |φ0〉 ‖2 ≤ 1. Therefore, we can reduce the

estimator’s variance by choosing a =
√

1
α . Moreover, if α is large, the new variance is about half of

the variance using the Hadamard gate.
Similar strategy can also be used to reduce the variance of the random variable Y .
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