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Recent advances in Noisy Intermediate-Scale Quantum (NISQ) devices have brought much atten-
tion to the potential of the Variational Quantum Eigensolver (VQE) and related techniques to provide
practical quantum advantage in computational chemistry. However, it is not yet clear whether such
algorithms, even in the absence of device error, could achieve quantum advantage for systems of
practical interest and how large such an advantage might be. To address these questions, we have
performed an exhaustive set of benchmarks to estimate number of qubits and number of measure-
ments required to compute the combustion energies of small organic molecules to within chemical
accuracy using VQE as well as state-of-the-art classical algorithms. We consider several key modi-
fications to VQE, including the use of Frozen Natural Orbitals, various Hamiltonian decomposition
techniques, and the application of fermionic marginal constraints. Our results indicate that although
Frozen Natural Orbitals and low-rank factorizations of the Hamiltonian significantly reduce the qubit
and measurement requirements, these techniques are not sufficient to achieve practical quantum com-
putational advantage in the calculation of organic molecule combustion energies. This suggests that
new approaches to estimation leveraging quantum coherence, such as Bayesian amplitude estimation
[1} 2], may be required in order to achieve practical quantum advantage with near-term devices. Our
work also highlights the crucial role that resource and performance assessments of quantum algo-
rithms play in identifying quantum advantage and guiding quantum algorithm design.

I. INTRODUCTION in less than a year this went from 32 in ]anuaryﬂto 64 in

]uneE] 128 in Septembeﬂ and finally 4 million in Octo-
ber (still awaiting experimental confirmation)ﬁ The sec-
ond requirement towards quantum advantage is identi-
fying commercially relevant tasks for which a near-term
quantum algorithm can provide a measurable improve-
ment compared to classical alternatives.
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In the last decade, quantum computers have evolved
from laboratory prototypes of a few qubits to machines
with tens of qubits that are commercially available for
researchers and businesses to use [3,4]. Google recently
announced the realization of the quantum supremacy
milestone: their 53-qubit chip accomplished a specific
task that would be extremely difficult to simulate with
a classical supercomputer [5]. This task was specifically
designed to be well suited to the quantum processor and
challenging for classical computers, and does not solve a
practical problem. The next milestone, and arguably the
most pressing one [6], is finding a practical quantum ad-
vantage with noisy intermediate-scale quantum (NISQ)
devices [7], that is, running an algorithm on a NISQ de-
vice that provides an improved solution for a commer-
cially relevant task. This improvement can manifest in
different ways, either as a reduction in the time to solu-
tion or an increase in the quality of the solution. Accom-
plishing this goal requires first a steady improvement
in the quality of quantum computing hardware. Fortu-
nately, we are witnessing a rapid growth in the number
of qubits and fidelity of these machines as indicated by
the recent trends in metrics such as quantum volume [8]:

Quantum chemistry has been identified as a likely
candidate [9H11] for quantum advantage for multiple
reasons. First, electronic structure calculations are used
extensively in the development of many technologies,
for example in the chemicals industry [12], drug de-
velopment [13], and battery materials research [14].
Second, electronic structure calculations rely on the
Schrodinger equation, for which a general exact solu-
tion has exponential cost on a classical computer with
all known classical methods. Third, quantum comput-
ers can store exponentially scaling representations of the
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wavefunction on a linear number of qubits and also pro-
vide means to implement Hamiltonian evolution effi-
ciently, giving rise to quantum algorithms to estimate
ground state energies of some molecular Hamiltonians
using polynomially scaling resources.

Quantum approaches to electronic structure calcula-
tions can be divided into two categories: 1) algorithms
based on the Quantum Phase Estimation subroutine and
related techniques and 2) quantum heuristic algorithms
[10], such as the variational quantum eigensolver (VQE)
[15] and related methods based on different versions
of the time-dependent variational principle [11]. Un-
der certain assumptions, approaches in the first cate-
gory can provide an advantage in computational scaling
compared to exact classical algorithms, however they
require a fault-tolerant implementation [9] [16-20], and
therefore are not applicable in the near-term. In contrast,
quantum heuristics such as VQE can be implemented on
NISQ devices thanks to the flexibility in their construc-
tion, but do not provide any proven asymptotic advan-
tage compared to classical algorithms. Demonstrating a
quantum advantage in this context requires a compar-
ison of the computational cost and performance of the
quantum heuristic against the state-of-the-art classical
approximations for specific problem instances. Perfor-
mance metrics might include aspects such as total run-
time and accuracy of the solution. In addition, this com-
parison must go hand in hand with an optimization of
the algorithmic choices of the heuristic to maximize per-
formance. From this perspective, a necessary step to-
wards achieving quantum advantage in the near term is
establishing protocols for evaluating quantum compu-
tational resources for specific sets of problem instances
and target accuracy of the solution, a procedure we will
refer to as resource and performance assessment (RPA).

While many studies have estimated resource require-
ments for quantum chemistry using fault-tolerant al-
gorithms such as Quantum Phase Estimation [16H21],
only a small number have assessed the resource require-
ments for NISQ approaches. McLean et al. has analyzed
the asymptotic measurement requirements of VQE [22]
while Kithn ef al. numerically examined qubit re-
quirements and required circuit depth for UCC-derived
ansatzes [23]. Numerical studies have explored the
VQE measurement costs of diatomic molecules and hy-
drogen chains/rings when applying fermionic marginal
constraints and a low-rank factorization of the Hamil-
tonian [24, 25]. Elfving et al. estimated the number
spin-orbitals required for industrially-relevant calcula-
tions and concluded that the required VQE execution
time was prohibitively large, although the method used
to estimate the execution time was not specified [21].

While these studies provide valuable insight into the
performance of VQE and its variants, several ques-
tions about the feasibility of these techniques for sys-
tems of practical interest remain unanswered. For ex-
ample, although VQE measurement requirements have
been assessed for small basis sets, such analysis has not

been carried out for the basis sets required to achieve
a useful accuracy with respect to the infinite basis set
limit. Another key question is how these measure-
ment requirements compare to state-of-the-art classical
quantum-chemistry techniques. Furthermore, previous
studies have employed canonical orbitals and not con-
sidered Frozen Natural Orbitals (FNO) [26H28], which
are known to significantly reduce the computational
cost of classical wavefunction-based quantum chemistry
methods.

To address these questions, we have performed an
RPA to estimate the number of qubits, number of mea-
surements, and total runtime required for calculating
combustion energies for small organic molecules to
within chemical accuracy with a single VQE energy
evaluation. These estimates consider Frozen Natural
Orbitals as well as measurement reduction techniques
such as Hamiltonian term grouping [29-33], the appli-
cation of fermionic marginal constraints [24], and low-
rank factorization of the Hamiltonian [25, 34].

Our results indicate that between 120 and 260 qubits
are required for chemical accuracy (error of at most
1.6 mHa [35]) for our benchmark systems. Under op-
timistic assumptions about the ansatz requirements and
the sampling rate of the device, we show that a single
energy evaluation could take several days to weeks, ren-
dering the calculations impractical and inferior to clas-
sical methods, in particular when considering the large
number of such evaluations required for the optimiza-
tion loop of VQE. Our results also show that although
certain grouping techniques greatly reduce the num-
ber of measurements, they are not enough to guarantee
practical runtimes in the regime where quantum advan-
tage is expected. This suggests that making VQE practi-
cal in the near-term requires the use of new approaches
to measurement that leverage quantum coherence to re-
duce estimation runtimes, such as the recently proposed
Bayesian amplitude estimation techniques [1} 2].

The rest of the paper is organized as follows: in Sec-
tion [l we introduce the general structure of an RPA
and proceed to describe the set of reactions we chose
for our study. Our RPA method includes establishing
accurate classical quantum chemistry reference values
by comparison with experimental reaction energies. We
then truncate the active space to establish the minimal
number of qubits necessary to preserve chemical accu-
racy. The last step of our estimation evaluates the num-
ber of necessary measurements to reach chemical accu-
racy on a quantum computer, including measurement
reduction techniques. This evaluation is made for in-
creasing active space sizes to establish asymptotic scal-
ing relationships. We present and discuss our numeri-
cal results for each step in Section [[II} We also introduce
an empirical extrapolation formula to establish runtimes
and resource requirements of more general systems than
the ones specifically studied in this work. Finally, we
present our conclusions and further research avenues in
Section[[V]



II. METHODS

In this section we describe our methodology for re-
source estimation, starting with an outline of the RPA
concept as applied to VQE, followed by a detailed de-
scription of the methods employed for the estimation of
classical and quantum computational resources.

A. Outline of the resource and performance assessment

The goal of an RPA is simple: we want to estimate as
accurately as possible the resources, such as number of
qubits, number of measurements, fidelity, among oth-
ers, needed to achieve a given quality of solution for a
specific choice of quantum algorithm and a set of prob-
lem instances. By fixing a target quality in the solu-
tion, it is possible to compare the cost with that of state-
of-the-art classical approaches, establishing whether a
quantum advantage is possible. The process can be di-
vided in five stages:

1. Define a set of problem instances and the quantum
algorithm to be assessed.

2. Set a target metric for performance. For example,
choose a target quality of solution or time to solu-
tion.

3. Select a classical approach for comparison, ide-
ally the state-of-the-art method for the instances
of interest, and estimate the amount of classical
resources required to achieve the target perfor-
mance.

4. Estimate the amount of quantum computational
resources required to achieve the target perfor-
mance using the quantum algorithm.

5. Compare the performances and computational
cost of the quantum and classical approaches. Es-
tablish whether a practical quantum advantage is
attainable.

RPAs start by delimiting the problem we want to
study to a set of relevant instances and choosing specific
performance metrics to compare against state-of-the-art
classical approaches. In this work, the problem under
study is the calculation of the combustion energy for a
set of small organic molecules. Our target performance
metric is to compute these reaction energies to chemical
accuracy. The next step is to select a classical algorithm
for comparison. Here, we selected the gold standard for
quantum chemistry, CCSD(T), and evaluated the cost of
estimating combustion reactions to chemical accuracy.
This resource estimate includes determining the basis
set and number of spin-orbitals needed to achieve chem-
ical accuracy. The performance of the classical approach
provides the reference to be outperformed by the quan-
tum algorithm, setting chemical accuracy as the target

metric for quantum advantage. In principle, it is also
possible to compare with available experimental data,
provided reliable enthalpic corrections to the electronic
energies are available. In our case, we instead ensured
that the classical approach was reproducing experimen-
tal data, and then used the classical results as reference.

With the target accuracy fixed, we proceeded to esti-
mate the number of qubits and total number of measure-
ments needed to achieve such accuracy assuming ac-
cess to a sufficiently expressive ansatz and high enough
gate fidelity. By incorporating assumptions about the
characteristics of the variational circuit and the quan-
tum hardware, we established realistic runtime esti-
mates for achieving chemical accuracy. These estimates
are based on extrapolations of empirical formulas ob-
tained from extensive numerical data generated for in-
stances of different sizes. Crucially, our analysis takes
into account the system and size dependence of different
performance metrics of the algorithm. For this reason,
we focus on techniques that can be scaled up to larger
molecules or clusters, which is why considerations of
spatial symmetry for example are not included.

To guarantee a realistic estimation of resources for
a quantum algorithm, we need to consider the inter-
play of different aspects of the algorithm and charac-
teristics of the problem instance. For example, in the
case of VQE, the system size and the choice of active
space determine the number of qubits for the calcula-
tion and thus influence the size of the variational circuit
required and the number of measurements. The algo-
rithmic choices also impact the final performance. For
instance, the number of measurements in VQE is influ-
enced by the grouping strategy used for the Hamilto-
nian and the way measurements are distributed among
groups. We made these algorithmic choices to maximize
the performance of the VQE approach.

While the most accurate RPA would require execut-
ing the algorithm, we can resort to educated approxi-
mations to estimate resources without executing quan-
tum computations, taking advantage of our knowledge
of the algorithm and the problem. The procedure might
involve investigating the empirical scaling of the re-
sources with system size in order to establish relation-
ships that allow extrapolation to larger instances, which
might not be accessible with existing quantum devices
or classical simulators. Some performance metrics, such
as the number of measurements in VQE, do not require
simulation of the quantum circuits and only depend on
properties of the problem instance. By performing es-
timates for problem instances of different sizes, we can
establish whether there is a regime where quantum ad-
vantage is feasible, either in terms of quality of solution
or time to solution. In the rest of this section we de-
scribe in details the benchmark data set chosen for our
RPA as well as the methodology for estimating classical
and quantum computational resources.
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FIG. 1. Set of hydrocarbons for which we compute combustion
enthalpies and corresponding quantum resources.

B. Benchmark data set

In this work, we aim to establish resource estimates
that can be extrapolated to larger systems. To ensure
our results are not specific to a single molecular system,
we wish to apply our resource estimation procedure to
a benchmark set of molecules. Ideally, this set would be
of practical relevance, contain small enough molecules
to allow chemically accurate computations, and corre-
spond to well-established, accurate experimental data.
For this reason, we chose to study combustion reactions
for the small hydrocarbons depicted in Figure |1} For
clarity, we explicitly write the general formula for the
reaction’s stoichiometry:

CH,0; + (x n % - g) 0, = xCO, + %H2o (1)
Experimental enthalpies of combustion for the hydro-
carbons in our benchmark set can easily be calculated
from available enthalpies of formation,[36] reported in
Table [SIl By combining electronic ground state energies
with vibrational, rotational, and translational enthalpic
contributions, we can obtain simulated combustion en-
thalpies that can be compared to the experimental val-
ues. Most of our work focuses on getting accurate elec-
tronic energies, as harmonic vibrational corrections are
obtained from the second derivatives of the electronic
energies. Anharmonic effects are expected to be impor-
tant for larger, flexible molecules but only play a very
minor role in our benchmark reactions, as numerically
verified in Section [ITA]
Algorithms to compute anharmonic vibrational spec-
tra on quantum computers exist, and have been argued

to be better candidates than electronic structure for early
quantum advantage.[37] This assessment was based on
considerations of scaling of the number of terms and
their locality in the respective Hamiltonians. However,
the relation between these quantities and the actual re-
sources needed on a quantum computer is non-trivial,
and notably depends on the coefficients in front of each
Pauli term and of the measurement or qubit reduc-
tion techniques that can be applied. We hope that our
method for resource estimation, detailed below, will be
useful in future work to estimate resources for anhar-
monic vibrational spectra computations, which would
allow to more accurately compare prospects of both
problems for early quantum advantage.

Our chosen set of molecules is dominated by dynam-
ical correlation. As pointed out by Elfving et al., this
means that a very large number of orbitals is needed
for accurate treatment [21]]. Hence, a very large num-
ber of qubits would be needed on a quantum computer
to rival with quantum chemistry capabilities on clas-
sical computers. In that sense, systems dominated by
non-dynamical correlations would be better candidates
for demonstrations of near-term quantum advantage.
However, we believe that most of our extrapolation and
resource estimation results are valid for general molec-
ular systems, whether dominated by dynamical or by
non-dynamical correlations. In particular, our results re-
garding the scaling of the number of measurements nec-
essary to reach chemical accuracy with the size of the
system should be transferable to most cases.

C. Methodology for resource estimation

This section describes the methods used for the re-
source and performance assessment. All calculations
were deployed using Zapata Computing’s Orquestra®
workflow management platform.

1. Classical benchmarks

The first component of the RPA consists of estab-
lishing a classical quantum chemistry approach to be
used for comparison, evaluating its limitations and the
classical resources needed to achieve chemical accu-
racyﬂ for a benchmark set of molecules. The current
gold standard for ground state electronic structure cal-
culations is the Coupled-Cluster with Singles, Doubles
and perturbative Triples CCSD(T) method [38], which

is polynomially-scaling as N’ where N is a proxy for

5 Chemical accuracy is defined as 1 kcal/mol or approximately
1.6 mHa. Its use as a standard for the accuracy of chemistry model-
ing methods is motivated by the exponential sensitivity of proper-
ties such as equilibrium constants and reactions rates to changes in
reaction energies [35].



molecular size. For closed-shell molecules, and with
sufficiently large basis sets, CCSD(T) can reach chemical
accuracy, i.e. an error of 1 kcal/mol compared to experi-
mental data [35,39]. Unfortunately, the N7 scaling limits
its application to small systems. Approximate CCSD(T)
methods were developed[40-43] that take advantage
of the spatial locality of electron correlation, which al-
lowed computation of much larger systems[43} 44] by
reducing the overall asymptotic scaling. However, the
accuracy of the local approximations in coupled-cluster
methods was recently questioned.[45] 46]

In addition, methods such as CCSD(T) are not suit-
able for some classes of molecular systems exhibiting
non-dynamical correlation. In these systems, the mean-
field solution to the electronic structure problem is qual-
itatively incorrect. For a more detailed discussion of
dynamic versus non-dynamic correlation, we refer the
reader to the existing literature.[47] Various methods
have been developed and are still being perfected to
treat systems with non-dynamic correlation with sub-
exponential cost like DMRG,[48, 49] Quantum and Full
CI Monte-Carlo [50H52]], various selected CI schemes
[53455], variational reduced density matrix optimiza-
tion [56, 57] etc. However, until now their applica-
tion has been limited to relatively small active spaces,
though much larger than what was previously possible
with exponentially scaling methods. Large reactive met-
allocenters, of which FeMo-co is a prominent example,
remain out of reach [21]].

The geometries of all closed-shell molecules in
our test set were optimized at the CCSD(T)[38]]/cc-
pVQZ[58] level with the density fitting
approximation[59] in Psi4.[60] For O,, the same level of
theory was used with a ROHF reference and without
the density fitting approximation for technical reasons.
Harmonic vibrational frequencies were computed at the
same level of theory as the geometry optimization for
all molecules.

To assess the performance of some commonly used
electronic structure methods, we computed electronic
reaction energies with Hartree-Fock, MP2 [61]], and the
density functionals B3LYP [62} 63] and wB97M-V [64] in
the very large aug-cc-pV5Z [65] basis set. For all closed-
shell molecules the RHF formalism was used whereas
the UHF formalism was employed for O,. The default
Psi4 (version 1.2.1) options were used for other aspects
of the computations. These calculations correlated all
electrons.

Convergence of energies to within chemical accuracy
of experimental data was achieved by computing high-
level electronic structure corrections. This data also al-
lowed us to investigate the importance of various high-
order contributions, and provided reference numbers
for further numerical experiments on the size of the ac-
tive space. For the smallest molecules in our benchmark
set, our final electronic energy Eg,1 is computed as:

AV5Z VIZ VIZ
Efinal = Eccspery + AEccspr + AECCspT),
+AE R + AEL ()

where the subscript identifies the contribution and the
superscript the basis set used. In this paper, we abbrevi-
ate the cc-pVXZ, aug-cc-pVXZ and aug-cc-pCVXZ[66]
basis sets as VXZ, AVXZ and ACVXZ respectively,

where X = D, T, Q or 5. E&Rf ) is the density-

fitted CCSD(T)/AV5Z electronic energy with core or-
bitals frozen, except for O, where the density fitting ap-
proximation was not used. In addition, we also com-
puted the CCSD(T) energy in the AVDZ, AVTZ and
AVQZ basis sets to verify the convergence of the cor-
responding reaction energies. The AVQZ and AV5Z re-
sults were used to extrapolate the CCSD(T) correlation
energy to the basis set limit using a cubic extrapolation
formula.[39, 67, [68]

Higher-order effects are estimated through incremen-
tal contributions. AEYI%,r estimates the effect of a full
treatment of triples amplitudes[69] relative to CCSD(T)
perturbative treatment:

AEEpr = E&spT — E&épm) @)

The additional effect of quadruple excitations is taken
into account perturbatively by the AEX(T%DT(Z)Q correc-

tion:

VTZ VTZ VIZ
AECCspT2), = Eccspre), — Eccspr “4)

where all energies are computed without the density
fitting approximation in NWChem.[70] In the case of
propane, the CCSDT(2)q[71H73] computations proved
to be too expensive and the correction is computed with
the VDZ basis set instead of VTZ. Note that the correc-
tions (3) and (4) could be computed simultaneously, but
we separate them here to gain insight into their individ-
ual contributions.

The difference between the perturbative CCSDT(2)q
treatment and the full, iterative CCSDTQ][74, [75] treat-
ment of the quadruple amplitudes was estimated for
all but the largest systems in our benchmark (namely
ethane, ethanol, propane and propene) as:

VDZ _ rVDZ VDZ
AECcsbrg = Eccsprq — Eccspr)g ®)
with all energies computed in NWChem without the
density fitting approximation.

Correlation effects for core electrons should be esti-
mated by including core polarization functions in the
basis set. Our incremental estimation for core correla-
tion effects is computed as:

ACVTZ _ pACVTZ ACVTZ
AEcore © = Eccsp(ty,an — Eccsp(ty s (6)
where the subscript "all" indicates that all electrons are
correlated whereas "fc" indicates that electrons in core



orbitals were frozen. Computations were done with the
density fitting approximation in Psi4.

To obtain reaction enthalpies AEyot, it is necessary to
add translational, rotational and vibrational enthalpic
contributions at finite temperature to Egy,,). The total en-
thalpic correction AHg,, was computed as:

AHginal = H?Z%%?D(T) + AHMRNE @)
t t ib, h VDPT2
= Hedspn + Hecspy + Hécspm + AHpaiyp

Hggsgjz%l are harmonic

translational, rotational and vibrational enthalpies com-
puted at the density-fitted CCSD(T)/cc-pVQZ level and
without density fitting for O,. Their sum is the total
harmonic enthalpy Hgacrgl‘)(T). AHYRYE? corrects the en-

thalpy for anharmonic vibrational contributions and is
computed as:

trans rot
where HCCSD(T)' HCCSD(T) and

VDPT2 __ pyvib, VDPT2 vib, harm
AHB3LYP - HB3LYP - HBBLYP (8)

where HE;bL';}?rm is the harmonic vibrational enthalpy

and HEQ%Y\;DPD is the anharmonic vibrational enthalpy
from VDPT2[76] calculations in the Quartic Force Field
(QFF)[77] approximation as obtained from anharmonic
ZPVE and frequencies computed by GAMESS. All
these contributions were computed at the B3LYP/def2-
TZVPPDI78,[79] level on geometries optimized with the
same method, using a Lebedev grid with 99 radial and
590 angular points. All enthalpic contributions are com-
puted at 298.15 K.

2. Number of qubits

To estimate the minimal number of qubits that can
be used while recovering CCSD(T)/AV5Z results with
sufficient accuracy, we explore different truncations
of the virtual active space. Although we are using
CCSD(T)/AV5Z as a reference for practical purposes,
we are assuming that higher-order correlations would
be recovered with a similar accuracy. In all cases, we
include a correction for the missing correlation energy
at the MP2 level, and all computations use the density
fitting approximation. Hence, the total CCSD(T) energy
E&sp(r) is computed as:

Ectspm = ECC8bem + AEmp2 )

where EggrSICD(T) is the CCSD(T) energy with virtual or-
bitals truncated and

AEnp = Efip, — ENY (10)

where Ef4ll, is the MP2 energy in the full space while
ENHC is the MP2 energy with virtual orbitals truncated.

The simplest choice for orbital truncation is to elim-
inate canonical virtual orbitals with the highest en-
ergy. However, a better choice is known in the quan-
tum chemistry literature as the Frozen Natural Orbitals
(FNO)[26H28] method. In FNO, pseudo-natural virtual
orbitals are obtained by diagonalizing the virtual-virtual
block of the MP2 density matrix. The virtual space is
then truncated by ranking the pseudo-natural virtual or-
bitals by their occupation number, which is usually in-
terpreted as an indication of their importance in the cor-
relation energy. We used two different methods to select
how many virtual orbitals to keep in the active space.
In the first, we simply fix the total number of available
qubits, and select the number of virtuals that fit on these
qubits together with the active occupied orbitals. In the
second, we used the FNO threshold as implemented in
Psi4 for the FNO-CCSD(T) [59, [80] method: virtual or-
bitals with occupations lower than half the threshold
for both the a and g spins are excluded from the active
space while all others are kept. We can then count the
number of virtual orbitals in the active space to deduce
the corresponding number of qubits.

We also note that there exists other methods to reduce
the number of qubits necessary to encode a problem,
most of which rely on using existing symmetries [81},182].
We did not investigate these methods as only a small
number of qubits can be eliminated without adding sig-
nificant complexity to the Hamiltonian, a trade-off be-
yond the scope of the present study. We also chose not
to restrict our analysis to include a specific spin symme-
try. When extrapolating our results to systems that can
benefit from symmetry, the number of necessary qubits
should be divided by the appropriate factor.

3. Measurement analysis

a. General considerations To estimate expectation
values of operators in the Variational Quantum Eigen-
solve (VQE) algorithm, it is necessary to perform many
measurements and average their results. In the case
of quantum chemistry simulations, the total number of
necessary measurements M can be estimated as follows:

M = 52, (11)
€

where € is the desired precision on the estimation and K
is a proportionality constant that depends on the Hamil-
tonian, the state being measured and the measurement
strategy employed for the estimation [22, 83], as de-
scribed below. Note that in quantum chemistry, an accu-
racy of of 1 mHa with respect to the exact ground state
in the infinite basis set limit is typically desired, which
means that the uncertainty due to sampling error € must

be less than this amount.
The variance of the Hamiltonian estimator, which de-
termines K, depends on details of the measurement pro-
cess and the qubit encoding. Here, we consider the



widely used Jordan-Wigner encoding of the fermionic
Hamiltonian to qubits. The qubit Hamiltonian takes the
form:

H=) nb, (12)
i

where P is a product of Pauli operators acting on one or
more qubits and /; is the associated coefficient. While
the simplest approach would be to measure each P; in-
dependently, grouping and other Hamiltonian decom-
position techniques can reduce the number of measure-
ments required [29H33]. Applying the Lagrangian ap-
proach of Rubin et al. [24] shows that when measure-
ments are optimally allocated to groups, the proportion-
ality constant between the number of required measure-
ments and the inverse square precision is given by

2

K=Y |} hahﬁCovar(p,X,pﬁ) (13)
C \/apec

where C represents a group and « and j label terms in
a group. This measurement allocation scheme assumes
that the covariances between all operators P, and 15/3
are already known, including the variances Var (P,) =
Covar (B, By). Eq. [13|represents a lower bound on the
value of K that could be achieved in practice because, in
general, one does not know the values of these covari-
ances and must estimate them.

Because K depends on the variances and covariances
of the operators P;, K depends on the specific Ansatz
used and the values of the Ansatz parameters. To avoid
these complications, and allow estimation of K for up to
80 qubits, we employ some simplifying approximations.
For the variances, we consider two approximations. In
the first, we assume variances to be 1, the upper bound.
In the second, we estimate variances from CISD density
matrices computed with Psi4 [84]. The variances can be
computed from the expectation value (P) of each oper-
ator since P? = 1:

Var (P) = (P2) — (P)’ =1-(P)*  (14)

We assume all of the covariances between different
terms to be zero. This does not correspond to a worst or
best case scenario, but approximates the effect of a ran-
dom distribution of covariances within bounds given by
the Cauchy-Schwartz inequality:

‘\/Var (Py) Var (ﬁﬁ)‘ > Covar (B, Dg) (15)

In practice, we observed that this approximation re-
sulted in K being overestimated by a factor of ~2 rela-
tive to estimates using covariances obtained from circuit
simulations of optimized Ansatzes. Note that when the
upper bound is used for variances and covariances are
set to zero, the estimated value of K is determined by the
coefficients of the Hamiltonian and does not depend on
the Ansatz or its parameters.

b. Hamiltonian decomposition methods In the conven-
tional approach to VQE, the Hamiltonian is decom-
posed into Pauli terms. It is possible to measure two
operators P; and 15]- at the same time if they commute.
However, general commutation implies that multi-qubit
measurements may be necessary to obtain information
about both operators [29]. Additional circuit operations
are necessary to obtain these multi-qubit measurements,
hence we restrict ourselves to grouping methods rely-
ing only on single-qubit measurements. The simplest
one groups operators which are Qubit-Wise Commut-
ing (QWC) [29] instead of the more general commuta-
tion relation. Qubit-Wise Commutativity implies that
for both P; and 13/,, the Pauli operators acting on the same
qubit individually commute. Information about the ex-
pectation values of a set of mutually QWC operators
can be obtained with a single measurement of all qubits,
each in the appropriate single-qubit Pauli basis. Finding
the optimal grouping of QWC operators is equivalent
to solving the Minimum Clique Cover graph problem
and is NP-hard in the general case [29]. Here we use a
heuristic greedy algorithm that goes through all opera-
tors and adds each one to the first group with which it
is qubit-wise commuting [85] [86]. In addition, we sort
the list of operators according to their coefficients h;, so
operators with the largest coefficients are grouped first.

We also consider the orbital frames approach to
Hamiltonian decomposition [25} [34] [86]. The Hamilto-
nian terms that only contain Z operators are measured
in the usual way, while an eigenvalue decomposition is
used to obtain a low-rank factorization of the remain-
ing two-body terms. The expectation values of this low-
rank factorization and the remaining one-body terms
can be obtained by applying a linear-depth basis rota-
tion circuit after the ansatz.

We also assessed the performance of a method based
on grouping mutually anticommuting Pauli terms [32}
33]. Our results show that anticommuting grouping is
less performant than QWC grouping (see Figure [S10),
therefore these results are not included in the main text.

A precise assessment of the number of measurements
required and its scaling with increasing system size for
both QWC and basis rotation grouping is fundamental
in predicting the runtime of energy estimation on NISQ
devices. For this purpose, we computed K for all the
molecules in our benchmark set with the exception of
O, for technical reasons. For each molecule, K was com-
puted for different active space sizes, where we always
used an integer number of qubits per active electron
to facilitate extrapolation. This was done for up to 80
qubits, and the exponents and prefactors obtained by
a power fit through our data were used to extrapolate
the number of measurements necessary for the 100 to
200 qubits region. In addition, we performed these esti-
mations for both the upper bound approximation to the
variances and variances computed from CISD. Finally,
for each case we also computed the Hamiltonian coef-
ficients based on canonical orbitals (as is usual in most



VQE publications) and based on FNOs (consistent with
our active space size estimations), relying on the AVDZ
basis set in all cases. This results in a total of six K es-
timations for each molecule and active space, giving us
unprecedented insight into the relative performance of
the different variants examined.

c. Variance reduction Grouping the Hamiltonian
terms is not the only possibility to reduce the total num-
ber of measurements needed. The Hamiltonian can also
be transformed so that its overall variance is reduced.
Here, we explored the Reduced Density Matrix Con-
straints (RDMC) method proposed by Rubin et al.[24]
In brief, this method adds operators to the Hamiltonian
that sum to zero and optimizes their coefficients to re-
duce the total variance. We implemented this method
directly in the qubit picture, which was suggested by
Rubin et al. to have better performance than the origi-
nal implementation in the fermionic picture. We present
a comparison of both implementations in Figure [S9] for
the interested reader. We apply RDMC to a small set of
molecules, with up to 20 qubits included in the active
space, and examine the reduction obtained in K for the
case of no grouping, for QWC grouping and for the ba-
sis rotation grouping. The Hamiltonians examined were
computed with FNOs based on the AVTZ basis set and
variances were estimated from CISD density matrices.

In conclusion, our resource estimation method in-
cludes a benchmark of classical methods, which can
then be used as a reference to estimate the number of
qubits needed to reach chemical accuracy in the gen-
eral case. We establish empirical scaling relations for the
number of measurements using state-of-the-art group-
ing and measurement reduction techniques, various ap-
proximations for the variances involved and two differ-
ent molecular orbital bases. These scaling relations and
their prefactors allow us to estimate the number of mea-
surements needed to reach chemical accuracy when the
qubit active space for the molecules in our benchmark
reaches 100 to 200 qubits. These relations are also use-
ful as a general guide for the scaling of QWC and basis
rotation methods, and for the performance of RDMC.

III. RESULTS AND DISCUSSION
A. Benchmarking classical chemistry methods

The main purpose of this section is to establish
whether classical quantum chemistry methods can
reach chemical accuracy for combustion reaction of
small, closed-shell hydrocarbons, and to quantify how
much effort is necessary to reach chemical accuracy. The
results of our assessment of classical resources will es-
tablish a reference for the next step of our resource eval-
uation which is concerned with the number of qubits re-
quired for chemical accuracy. We begin our evaluation
by considering the importance of harmonic enthalpic ef-
fects and the performance of common, relatively inex-
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FIG. 2. Combustion enthalpy errors in k] /mol using Hartree-
Fock, B3LYP, wB97M-V and MP2 in the AV5Z basis set.
AHE%%?D(T) contributions at the df-CCSD(T)/cc-pVQZ level are
included.

pensive quantum chemistry methods, before moving on
to the contributions of various high-level corrections.
The harmonic enthalpy contributions to the combus-

tion energies AHEacrsIfb(T) are reported in Table [l Con-

tributions vary between —1.39 kJ/mol for CH4O and
21.14 kJ/mol for CyH,. Since chemical accuracy is
generally defined as a maximum error of 4.2 kJ/mol
with respect to experimental data, the contribution of
AHg"gg]‘)(T) cannot be neglected for our set of combus-
tion energies.

In Figure electronic combustion energies from
Hartree-Fock, B3LYP, wB97M-V and MP2 are added to
AHE%%%(T) and the resulting error with respect to exper-
iment is plotted. The very large AV5Z basis set used en-
sures all self-consistent field calculations are converged.
In the case of MP2, the differences between AVQZ and
AV5Z is about 10 k] /mol (see Figure , much smaller
than the plotted errors. As expected, the error for
Hartree-Fock is the largest and ranges between 100 and
300 kJ/mol because of the neglect of dynamical corre-
lation effects. MP2 improves over these numbers, but
overshoots the correct value, a behavior which was pre-
viously reported [87]. MP2 errors approximately range
between -50 and -150 kJ/mol, well outside the region
of chemical accuracy. The popular B3LYP density func-
tional has slightly lower errors of up to 100 kJ/mol.
wBY97M-V is a recent functional that provides significant
improvements, but still cannot reach chemical accuracy
with errors ranging from 17 to 59 kJ/mol. In conclu-
sion, the performance of common quantum chemistry
methods that can routinely be applied to larger systems
is insufficient to reach chemical accuracy.

To improve our results, we need to turn to the more



Molecule CH4 CH4O C2H6 C2H4 Csz C2H6O C3H3 C3H(J C3H4
CCSD(T)/AV5Z —809 | —671.5|—1434.2| —1336.7 | —1279.2| —1273.9 | —2046.7 | —1939 | —1872.8

AH(l}aCréﬁ‘D(T) 844 | —1.39 | 7.02 13.79 21.14 —0.43 7.65 14.42 20.64
CCSD(T)/AVSZJrAHg%{ér]‘D(T) —800.6| —672.9| —1427.2| —1322.9| —1258.1 | —1274.3| —2039.0| —1924.6 | —1852.2
[ Experiment [—802.5[—676.1]—1428.4] —1323.0] —1256.2[ —1277.6| —2043.9] —1925.9] —1849 |

TABLE I. CCSD(T)/ AV5Z combustion energies, harmonic enthalpic contributions AHgaCrgI‘)(T)to combustion energies, and experi-
mental values[36]] in kJ/mol. All values at 298.15 K and 1 atm, see text for methods.
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FIG. 3. CCSD(T) combustion enthalpy errors in kJ/mol

in various basis sets and with AVQZ/AV5Z extrapolation.
AH(}}aCrS"%(T) contributions at the df-CCSD(T)/cc-pVQZ level are
included.

computationally demanding gold standard of quantum
chemistry: CCSD(T), which scales as N 7. In Figure
we see that convergence of the error for this method as
a function of the basis set angular momentum is quite
slow. At the AVTZ level, errors are almost as large as for
wB97M-V, whereas chemical accuracy is reached for all
reactions at the AV5Z level. We also plotted results with
the def2-TZVPPD basis set, which performs slightly bet-
ter than AVTZ in spite of being slightly smaller. In
general, we expect the def2-TZVPPD basis to be better
suited for DFT calculations than the similar AVTZ basis,
and this is indeed what we observe in Figure Even
at the AV5Z level, the agreement of the sum of CCSD(T)
and AHE‘:%%I]‘)(T) contributions with experimental values

is somewhat fortuitous, and the energies are not com-
pletely converged yet. Indeed, a cubic extrapolation of
the AVQZ and AV5Z correlation energies increases the
error from experimental values, while providing results
that should be closer to the complete basis set limit. The
final errors vary between —2 and —10 kJ/mol.

Going beyond CCSD(T) is possible, albeit at signifi-
cant cost, by computing high-level corrections in smaller

basis sets. Indeed, the difference between CCSD(T)
and high-level methods is expected to converge faster
with the size of the basis set than the respective total
energies.[88] We examine these corrections by increas-
ingly high order treatment of amplitudes, and our re-
sults are gathered in Table

The ACCSDT correction represents the difference be-
tween the perturbative treatment of the triples ampli-
tudes in CCSD(T) and the full treatment of these am-
plitudes which scales as N8. Here, it amounts to at
most 2 kJ/mol in the VIZ basis, confirming the accu-
racy of the CCSD(T) treatment. Next, we introduce per-
turbatively the effect of quadruples amplitudes through
the ACCSDT(2)q correction that represents the differ-
ence between CCSDT and the CCSDT(2)q perturbative
method, scaling as N 9. This correction is significant, and
contributes up to 5.74 kJ/mol to combustion energies.
Omitting the largest molecules, we confirm the accuracy
of CCSDT(2)g by computing the full, N scaling, CCS-
DTQ energy at the VDZ level, resulting in a correction
of at most 0.46 k] /mol.

The overall effect of high-order excitations is the sum
of ACCSDT, ACCSDT(2)q and ACCSDTQ and ranges
between 2.5 and 7.7 kJ/mol. This effect is almost en-
tirely canceled out by the AEASYTZ core correlation con-
tributions as observed in Table [l The ACVTZ basis set
used is likely to be sufficient for converging core corre-
lation effects, as supported by comparison with results
obtained in the ACVDZ basis in Figure By contrast,
the same contribution shows very large variations when
computed with the AVIZ and AVQZ bases which lack
core polarization functions, in spite of their higher angu-
lar momentum. This highlights the importance of using
core polarization functions when computing core corre-
lation effects.

Finally, anharmonic contributions to combustion en-
thalpies are negligible for the molecules considered and
range between —0.77 kJ/mol and +0.18 kJ/mol. This
is expected since vibrational anharmonicity plays a mi-
nor role in small rigid molecules, but would become
significant in large and flexible systems with soft vi-
brational modes. Combining all corrections, we ob-
tain an RMSE of 2.4 kJ/mol if the main contributions
are computed with CCSD(T)/AV5Z, but of 5.1 k] /mol
if the AVQZ/AV5Z extrapolation of correlation ener-
gies is used (see Table [SII). By comparison, experimen-
tal enthalpies of formation have uncertainties of about
1 kJ/mol or lower for our test set. The lower perfor-
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Molecule

CH, |CH,0[CyHy | CoHy | CoH, [CoHO

CsHg | C3Hg | CsHy

ACCSDT (VIZ) | 098 | 0.70 | 0.99

149 | 0.80 | 1.23 2.00 192 | 1.24

ACCSDT(2)g (VIZ)| 2.63 | 1.70 | 4.39

3.86 | 3.55 | 3.49

532(VDZ)| 5.74 | 5.39

ACCSDTQ (VDZ) | 021 | 0.10 [N/A| 031 | 037 | N/A | N/A |[N/A| 046
AEACYTZ —3.15| —2.64|—5.41|—-4.86|—3.81| —4.73 | 754 |-6.82|-5.60
Aanharmonic | +0.18| —0.34|—0.11|—0.16|—0.32| —0.77 | —0.13 |—0.25/—0.10

[ AEwterror [ 275 272 [ 1.06 | 0.74 [-1.31] 252 | 455 | 1.89 [—1.81]

TABLE II. High-level, core correlations, and anharmonic enthalpy corrections to combustion enthalpies in k] /mol. All corrections
computed with the indicated basis set, except for ACCSDT(2)q in the case of propane for which the VDZ basis was used. See

Section [[I| for details. AEy is the sum of all corrections combined with CCSD(T)/AV5Z + AH(}}*’C%‘]})(T) results, and the error is

computed relative to experimental data.

mance of the extrapolated energies is indicative that
some contributions may not be fully converged, or that
the AVQZ energies are not reliable enough for extrapo-
lation. In any case, the CCSD(T)/AV5Z result is used in
the following section.

In conclusion, the combination of harmonic en-
thalpies and CCSD(T)/AV5Z electronic energies pro-
vides combustion enthalpies within chemical accuracy.
These accurate results stem from a cancellation of errors
between high-level correlation effects and core correla-
tion effects. This means that reliably reaching chemi-
cal accuracy for large systems is challenging even when
only dynamical correlation is present. In cases where
the observed error compensation does not occur, even
CCSD(T) at the CBS limit might not be sufficient. Pro-
vided Ansdtze on quantum computers can take into ac-
count high-order excitations at a sufficiently low poly-
nomial cost, they could provide a better path to chem-
ical accuracy. However, a significant number of qubits
would be needed, as we demonstrate in the next section.

B. Number of qubits

In this section we explore how truncation of the active
space impacts the combustion energy errors. We take as
reference the CCSD(T)/AV5Z electronic combustion en-
ergies unless indicated otherwise. We then compute the
CCSD(T) combustion energy in various basis sets with
truncated virtual spaces, and compare the energy ob-
tained to our CCSD(T)/AV5Z reference computed with
all spin-orbitals. In all cases the AEyp, correction is in-
cluded to compensate part of the truncation error. We
assume that the errors observed would be similar when
truncating the virtual space for an ideal Ansatz that can
effectively yield the FCI energy on a quantum computer.
In our first experiment, we truncate the virtual space by
keeping a fixed number of spin-orbitals: 40, 72 and 128.

As was previously reported in the literature [27],
canonical virtual orbitals are not an optimal basis for
virtual space truncation. Indeed, we observe very large
errors in that case even with 128 qubits and the AV5Z
basis sets, which are the largest active space and basis
sets explored, respectively (see Figure [S4). The smallest

Basis / Number of qubits (canonical MOs)
aug-cc-pVDZ | aug-cc-pVTZ Jaug-cc-pVQZ | aug-cc-pV5Z
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FIG. 4. Error relative to CCSD(T)/AV5Z for the FNO method
with a fixed number of qubits and frozen core orbitals. AEypy
correction is included in the results.

errors range between —50 and —200 kJ/mol. Moreover,
the errors do not converge smoothly as the active space
size is increased from 40 to 128 qubits.

A better truncation basis for correlated calculations is
provided by Frozen Natural Orbitals (FNOs). In Figure
we plot the errors obtained for different basis sets and
active space sizes. We first notice that combustion en-
ergy errors visibly converge towards the full basis set
limit for each basis examined when going from 40 to 128
qubits. However, even in the largest active space chemi-
cal accuracy cannot be reached and the final errors range
from 3 to 13 kJ/mol for AV5Z.

To facilitate the exploration of active space sizes, our
second experiment switches to the FNO threshold as a
criterion to select active virtual orbitals. Focusing on
AVQZ and AV5Z, we present results for thresholds of
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FIG. 5. (Top) Error relative to CCSD(T)/AV5Z for the FNO
method using the FNO threshold for truncation and frozen
core orbitals. (Bottom) Largest number of qubits per active
electrons that would be needed to compute the combustion
energy for each molecule in the given active space. AEypy cor-
rection is included in the results.

1073, 1074, 10> and 10°°. The upper part of Figure
shows that the combustion energy error is indistin-
guishable from the full basis value at a threshold of 10~°.
A threshold of 107° yields a maximum deviation of
—1.8 kJ /mol from the full basis result, whereas a thresh-
old of 10~* results in a maximum error of —7.1 kJ/mol,
larger than chemical accuracy.

To connect the FNO threshold to the size of the ac-
tive space in a transferable way, we plot the maximum
number of qubits per active electron for each combus-
tion reaction in the lower part of Figure 5| This num-
ber is obtained by dividing the number of active FNO
spin-orbitals by the number of active electrons for each
molecule in a combustion reaction, and then selecting
the largest result. A threshold of 10~# corresponds to
about 13 qubits per electron, which is the number we
will use to estimate the size of the active space neces-
sary to reach chemical accuracy. This is an optimistic
estimate: the errors we observe are slightly larger than
chemical accuracy relative to the full basis limit for
AV5Z, but this could be compensated for by including
orbital optimization [89], or by using some of the qubit
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reduction techniques [81}[82] mentioned above.

To conclude, our estimation for the number of qubits
Nq necessary to obtain accurate dynamical correlation
energies is at least

Nq ~ 13Ng (16)

where N is the number of active electrons in the sys-
tem.

C. Measurement estimation

In this section, our aim is to estimate the number
of measurements needed for a single energy estima-
tion step in the VQE procedure. We consider measure-
ment reduction techniques based on qubit-wise com-
mutativity of Pauli terms [29] and orbital basis rotation
[25]134], realistic variance estimation, and an efficient or-
bital basis so that our final estimates reflect conditions
close to a large experiment. We aim to obtain extrapola-
tion formulas for the number of measurements for each
molecule in our benchmark set. This will allow us to ex-
trapolate the number of necessary measurements for the
large qubit active spaces needed for chemical accuracy
(see Section [[ITB). We also provide empirical scaling re-
lations for two grouping methods.

1. Performance of Hamiltonian decomposition methods

We evaluated the Hamiltonian variance K for QWC
grouping and basis rotation approach with two different
bases for the Hamiltonian (canonical orbitals or FNOs)
and two different estimates for the variances (upper
bounds or CISD), giving a total of 4 different settings
for each grouping method. We ran computations for
all molecules in the set depicted on Figure [1} and also
included HyO and CO; that are necessary for comput-
ing combustion energies. Due to technical limitations in
our code at the time of computation, the open-shell O,
was omitted. We expect scaling results would be similar
to those obtained for CO,. For each molecule, we com-
puted different active spaces with an integer number of
qubits per active electron up to a total of 80 qubits. This
represents the most extensive investigation of the num-
ber of measurements in VQE to our knowledge. We fit
our results to a power law for each grouping method:

K =a(Ng)" (17)

where N, is the number of qubits, 2 and b are fitted pa-
rameters. The obtained scaling exponents b are reported
next to the corresponding curves on Figure|[6]

The number of terms in the quantum chemistry
Hamiltonian scales as N*, where N is the number of
qubits. However, the QWC grouping method with op-
timal measurement allocation approximately scales be-
tween N° and N°. The optimal measurement alloca-
tion tends to attribute very little to no measurements
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to terms with very small Hamiltonian coefficients that
can safely be neglected. Thus, the observed scaling for
QWC grouping only constitutes a modest improvement
over the estimated upper bound of N° for scaling with-
out grouping.[22]

Basis rotation grouping offers significantly better scal-
ing, as hinted by the data presented by Huggins et al. for
up to 32 qubits.[25] We observe that the scaling varies
between N23 and N*®, a very significant improvement
compared to QWC grouping results. In addition, the
effect of this improved scaling is already beneficial at
low number of qubits, so that QWC grouping never ap-
pears advantageous in our computed data. The power
law fits indicate that there is a crossover point at which
QWC grouping could be preferred, but it only happens
for very low number of qubits. Such an example ap-
pears in the next section, in Figure [7] for 12 qubits. Ba-
sis rotation grouping practically always yields a lower
number of measurements, however it necessitates the
addition of a basis rotation circuit before measurements
are performed. Although this circuit has a very shallow
depth,[90] in situations where fidelity needs to be maxi-

mized it might become too costly.

To facilitate the comparison of K computed with up-
per bound and CISD variances, we plotted again the
data in Figure[f]so as to highlight the difference between
the two variance estimation methods in Figure As
expected, this clearly shows that CISD variances always
yield a lower number of measurements, albeit by only 20
to 30% when combined with QWC grouping. With ba-
sis rotation grouping, the benefit is significantly larger
and reaches a factor 5 to 10. This shows that variance
approximation is an important aspect to consider when
estimating measurements: errors of an order of magni-
tude can occur when using upper bounds.

The effect of changing the orbital basis of the Hamil-
tonian from canonical orbitals to FNOs is visualized on
Figure[S6| which contains the same data as Figure 6| but
highlighting the difference of interest in color. In section
11C2, we showed that FNOs yield significantly more
correlation energy than canonical orbitals for the same
number of qubits, which allows chemically accurate re-
sults in smaller active spaces. However, this increased
accuracy comes at a price since the value of K is system-



atically higher for FNOs, by a factor of up to 10 in some
cases. This is slightly compensated by a lower scaling
exponent (compare left and right column of Figure [6),
that reflects the fact that K saturates faster for FNOs. In-
deed, when all virtual orbitals are included, the canon-
ical and FNO spaces are the same and they must have
the same K.

To obtain extrapolations of the value of K for each
molecule, we must choose one of the eight variants in-
vestigated. For variance estimation, the CISD approxi-
mation is closest to what would be experimentally ob-
served. In spite of the increased number of measure-
ments, we believe the FNO basis is more advantageous
since it yields more compact active spaces. Finally, we
consider that the circuit fidelity is high enough to afford
the orbital rotation circuit from basis rotation grouping.
Hence, we fit Equation for each molecule using K
computed with basis rotation grouping, FNO Hamilto-
nians and CISD variances. We report our results in Ta-
ble [, and we also plot the fits in Figure The fit
to all molecular data presented in Figure E}%elded an
exponent of 2.3, while for individual molecules b varies
between 1.8 and 2.7. Most prefactors a have the same or-
der of magnitude, except for HyO where the prefactor is
5 to 10 times larger than for other molecules. However,
HO also has the lowest exponent.

The fits presented above represent the scaling of
K when increasing the number of qubits for a fixed
molecule, which is convenient to extrapolate K to the
very large active spaces needed for chemical accuracy.
This "virtual scaling” is not the same as the "size scal-
ing", where both the number of active electrons and
the number of qubits increase. To investigate size scal-
ing, we fitted Equation [I7]through our data for increas-
ing numbers of active electrons while keeping the num-
ber of qubits per active electrons fixed. We only have
enough data to obtain meaningful fits for up to 5 qubits
per electrons. Beyond that, the extrapolation gives in-
coherent results where larger active spaces would need
fewer measurements, whereas for 2, 3, 4 and 5 qubits
per electrons the obtained scaling is consistent. Over-
all, size scalings are slightly more favorable than virtual
scalings (see Figure [S8). The QWC grouping method
scales around N* to N°° in most cases, whereas the basis
rotation method scales between N? and N22. Thus, this
data suggests that the basis rotation method provides
a considerable asymptotic improvement in the number
of measurements compared to QWC and related ap-
proaches.

2. Variance reduction

We now turn to a method that transforms the Hamil-
tonian to reduce the number of required measurements:
the application of fermionic marginal constraints intro-
duced by Rubin et al. [24], that we will abbreviate as
RDMC for Reduced Density Matrix Constraints. Since
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the application of RDMC takes significant classical re-
sources using our prototype implementation, we re-
strict our study to a few molecules and active spaces.
Our goal is to obtain an empirical estimation of the im-
provement in K that RDMC yields. Our results are pre-
sented in Figure [/} where we compare the performance
of various grouping methods combined with or without
RDMC. In all cases, RDMC yields reductions in the val-
ues of K. The reduction factor obtained is about 3 to 5
when no grouping methods is used. In the case of QWC
grouping, the reduction provided by RDMC decreases a
bit to a factor of 2 to 3. Basis rotation grouping usually
yields the lowest K and has the best scaling with molec-
ular size or number of qubits. Even in this case, RDMC
is able to yield an additional improvement to K, of ap-
proximately a factor of 2. We note that the observed per-
formance of RDMC seems to vary significantly among
tested cases, and a factor of 2 is a somewhat conserva-
tive estimate. In general, the smaller reduction factors
are obtained for larger number of qubits.

For low number of qubits, there are some irregular-
ities in the patterns usually observed. For example, in
active spaces of 12 qubits, the QWC grouping method
generally performs better than the basis rotation group-
ing. This also happens for H,O in 16 qubits with RDMC.
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Molecule HQO C02 CH4 CH4O C2H6 C2H4 C2H2 C2H6O CgHg C3H6 C3H4
b 18|24 |22| 22 | 25 | 26 | 25 2.4 24 | 26 | 2.7
a-10° | 45 [ 4458 9.0 19 | 1.3 | 1.6 3.8 25 | 1.6 | 1.0

TABLE III. Results of fitting data for each molecule with K = a(Nq)b (Equation when using basis rotation grouping, CISD
variances and FNOs. a is multiplied by 100 in the table for clarity.

At these low number of qubits, very few virtual orbitals
are included for each active electron, less than one for
12 qubits. This makes it difficult to extrapolate the be-
havior of the methods examined to large qubit num-
bers, and highlights the importance of running system-
atic benchmarks on large enough systems.

As highlighted in section[[T C 3| our RDMC implemen-
tation performs the Hamiltonian transformation in the
qubit picture, as was suggested in the original work.[24]
In Figure[S9) we compare our results to the original im-
plementation in the fermionic picture, and confirm that
the qubit picture implementation systematically yields
equivalent or better results. In general, RDMC shows a
reduction in measurement count in all cases tested and
therefore it could provide practical improvements for
the implementation of VQE in the near-term. However,
a more extensive analysis of the classical computational
cost of this technique and the magnitude of its improve-
ment when scaled to larger systems would improve the
current assessment.

D. Overall qubit and runtime requirements

In this section, we summarize and gather the pre-
vious results to obtain estimates for the number of
qubits, number of measurements and runtimes required
to reach chemically accurate results for the set of inves-
tigated combustion reactions. The number of qubits Ny
is estimated simply from Equation (16| and the number
of valence electrons in each molecule. The number of
measurements is computed as:

K
M=_—

e (18)

where K is extrapolated for each molecule separately
from Equation[17]with 4 and b taken from Table [T} The
extrapolation takes into account basis rotation group-
ing, approximated variances from CISD and assumes
the Hamiltonian is expressed in the FNO basis. The ex-
tra factor of 1/2 in Equation |18 approximately accounts
for the additional measurement reduction provided by
RDMC on top of the basis rotation grouping. We fix
€ = 0.5 mHa instead of the usual chemical accuracy of
1.6 mHa. Indeed, we allow 1.1 mHa for additional er-
rors arising from truncation of the active virtual space
and from device noise effects. Note that reducing the ef-
fect of device noise to below chemical accuracy in gen-
eral is still a subject of research, and the low error we are

assuming can only be achieved on the smallest circuits
with the best devices currently.

To convert the number of measurements to actual
runtimes, several additional assumptions are neces-
sary. The first and perhaps most speculative regards
the Ansatz. Although the UCCSD Ansatz generally
yields good results in spite of deficiencies for strong
correlation [91], the corresponding quantum -circuit
is extremely deep and not appropriate for NISQ de-
vices. Alternatives have been designed [92, O3] how-
ever we will assume here that we can use a shallower,
hardware-efficient Ansatz. Such Ansatz makes use of
parametrized entangling gates that are taken to be hard-
ware native or easily compiled to hardware native gates
without significant overhead. We are assuming a lin-
ear connectivity of the qubit array, in which case a sin-
gle layer of a hardware-efficient Ansatz is defined as the
circuit of depth 2 that entangles every neighboring pair
of qubits. We further assume that the number of layers
needed to reach the ground state energy scales linearly
with the number of qubits, and for the purposes of our
estimation, we choose the prefactor in the scaling to be
2. It is likely that this depth constitutes a lower bound
for the Ansatz depth that would be necessary in prac-
tice. Since our extrapolation for K assumes the basis ro-
tation grouping, we also need to add the depth of the
circuit for basis rotations, which is Nq — 3 on a linear
array of qubits if « and 8 spins can be transformed in-
dependently [90]. The final depth of the circuit would
then be 5Ng — 3 in terms of two-qubit gates. Our final
assumption is that runtime is dominated by execution
times of two-qubit gates, which is assumed to be 100
ns, a value on the faster side of current superconduct-
ing gate times (see Table 1 in the review by Kjaergaard
et al.[94]). The final formula we use to obtain runtimes ¢
in seconds from the values of M and N, reads:

t =10""M(5Nq — 3) (19)

We report the results of our runtime estimates in Ta-
ble We also plot our estimated runtimes from the
computed K values of Figure |6 and their extrapola-
tion on Figure The picture painted by these run-
times is very pessimistic for VQE. The shortest runtime
for energy estimation, for CHy, is 1.9 days. This is in
spite of using rather optimistic estimates for the Ansatz
depth, the number of qubits needed and neglecting the
time for qubit reset, cloud latency times or measurement
overheads for error mitigation. Moreover, we highlight
again that this is the time necessary for a single energy
evaluation. Running the full VQE algorithm involves
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Molecule HQO C02 CH4 CH4O C2H6 C2H4 C2H2 C2H6O CgHg C3H6 C3H4
N 8 |16 | 8 14 14 12 10 20 20 18 16
Ny 104 | 208 | 104 | 182 | 182 | 156 | 130 | 260 | 260 | 234 | 208

K-103[19]16 [ 16| 84 85 | 6.6 | 3.1 24 16 23 18

M-1077[39 [ 32 [32] 17 17 13 | 6.2 48 31 46 36

t(days) | 23 | 39 | 1.9 | 18 18 12 | 4.6 71 47 62 44

TABLE IV. Estimated runtimes f in days for a single energy evaluation using the number of measurements M from extrapolated
values of K (Equation [I7]and Table [[II), with e = 0.5 mHa and the effect of RDM constraints included by a factor of 1/2 (see
Equation[18). The number of qubits Ng is computed from the number of active electrons N and our empirical estimations of

active space size (Equation [T6).

optimizing the circuit parameters, which requires at
least a few dozen to hundreds of iterations even with ex-
cellent optimizers. Hence, the total VQE runtime would
be about a month for the smallest molecules in our test
set. Larger molecules like ethanol already have a run-
time of 71 days for a single energy evaluation.

These runtimes originate essentially in the consid-
erable number of measurements necessary to obtain
chemically accurate energies for molecules. Even on
devices where the error rate would be small enough
to warrant reliable VQE execution, the runtime to so-
lution would be prohibitive for molecules in our test
set. Parallelization of measurements over several quan-
tum devices is a potential solution, provided all of these
quantum devices are sufficiently similar, and the distri-
bution of measurements designed to achieve chemical
accuracy. However, parallelization could only bring a
constant factor improvement and will not change the
scaling of the runtimes with molecular size. In the case
of systems dominated by non-dynamical correlation, a
smaller active space might be sufficient to demonstrate
quantum advantage over classical computing power. A
recent paper[21] proposes the chromium dimer with a
(24, 24) active space as a potential candidate. At 48
qubits, our extrapolation on Figure indicates a run-
time of a few hours, which could allow for a full VQE
optimization with considerable effort. However, Hamil-
tonian coefficients for heavier, strongly correlated atoms
like Cr might be larger, which would result in larger val-
ues of K. Moreover, even if such a computation becomes
possible, the transition to practically relevant advantage
could require active spaces beyond 100 qubits.[21]

Focusing on the scaling b and omitting the prefac-
tor a, our results for the basis rotation grouping tech-
nique suggest that VQE has the potential to scale better
with system size than methods such as Coupled Clus-
ter. To transform this difference in scaling into an actual
practical advantage, research should focus on two di-
rections: 1) developing linear scaling Ansétze that pro-
vide sufficient accuracy on NISQ devices and 2) improv-
ing the measurement techniques, in particular to reduce
the dependency of the number of measurements on the
required precision. Regarding the first direction, hav-
ing sufficiently accurate Ansitze for VQE with a circuit
depth scaling only linearly implies an empirical runtime

scaling of N3 to N*, which would be very competitive
with the scaling of approaches such as CCSD(T). A num-
ber of Ansidtze with linear scaling have been proposed
[90, 95], but more studies should be devoted to inves-
tigating their representational power for chemical sys-
tems of interest, and the impact of noise on their accu-
racy. Along this line, the development and benchmark-
ing of error mitigation techniques is crucial towards
achieving sufficient accuracy on NISQ devices. Regard-
ing the second direction, methods that can reduce the
dependency of the number of measurements with re-
spect to the required accuracy should be prioritized to
make VQE competitive. One such method has been re-
cently proposed by Wang et al.[1] and Koh et al.[2] which
trade circuit fidelity for a reduction in the number of
measurements.

IV. CONCLUSIONS

The Variational Quantum Eigensolver (VQE) is a
heuristic algorithm, which does not have yet a demon-
strated quantum speed-up over classical algorithms for
quantum chemistry. Hence, it is of utmost importance
to adequately benchmark VQE to evaluate its perfor-
mance and prospects for quantum advantage. One sig-
nificant step has recently been made in this direction [21]
by identifying what molecules are the most likely candi-
dates for quantum advantage, and in particular for prac-
tically relevant quantum advantage.

Here, we outlined a general procedure to assess quan-
tum advantage with a quantum heuristic by carrying
out a resource and performance assessment (RPA). We
performed a specific RPA for computing a set of com-
bustion energies with VQE, but our general method is
also applicable to other variational algorithms. First, it
is essential to assess the performance of state-of-the-art
classical algorithms to check whether they can solve the
problem at hand and estimate the compute resources
required. Then, the number of qubits necessary to ob-
tain a solution that is accurate enough should be es-
tablished. Finally, a rigorous estimation of the number
of measurements needed to evaluate expectation values
with sufficient accuracy is performed. Measurement re-
quirements are crucial to obtain approximate runtimes,



which are ultimately decisive for the practicality of the
quantum algorithm.

Our classical benchmarks show that CCSD(T)/AV5Z
complemented with harmonic enthalpic corrections at
the CCSD(T)/VQZ level is sufficient to reproduce exper-
imental combustion enthalpies to within chemical ac-
curacy. Our high-level corrections reveal that the ac-
curacy obtained originates from error cancellation be-
tween high-level correlation contributions (up to CCS-
DTQ) and core correlation effects. Anharmonic con-
tributions to enthalpy are negligible for our systems.
CCSD(T)/AV5Z is taken as our reference energy to esti-
mate the minimal size of the active space that still yields
chemical accuracy. Using the well-known FNO method
for virtual space truncation, we observe that at least
13 qubits per active electrons must be included to ob-
tain dynamical correlation energies within chemical ac-
curacy.

Our RPA results further show that the number of mea-
surements necessary for QWC grouping scales as N°
to N®, whereas the basis rotation grouping only needs
about N? measurements, at the cost of a small addition
to the overall circuit depth. The application of RDMC
on the Hamiltonian in addition to grouping warrants
another reduction in the number of measurements by
a factor of 2. Unfortunately, the €2 precision depen-
dence of measurement requirements introduces a very
large multiplicative factor. With optimistic assump-
tions regarding the total circuit depth and the execu-
tion time of quantum circuits, estimating a single energy
for molecules in our test set to chemical accuracy would
take between a few days and a couple of months. Com-
bined with the necessity for a large number of energy
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evaluations to optimize VQE parameters, this indicates
that VQE with operator averaging is not currently prac-
tical even for molecules with only a few heavy atoms.
There are several possible ways to resolve this issue.
One is to work on better Hamiltonian decomposition
methods, and hopefully achieve reduction in the pref-
actor or the scaling of the number of measurements
needed as a function of the system size. Another would
be to work on improving Hamiltonian transformations
to reduce the Hamiltonian variance further. Some of
these directions have been explored by the authors with-
out significant success. However, a more concrete im-
provement tackles the e =2 dependence of the number
of measurements. Recently, the use of Bayesian tech-
niques combined with Engineered Likelihood Functions
[1, 2] offered a way to exploit better device fidelity
to reduce the number of measurements, bridging VQE
and Quantum Phase Estimation in a practical way. En-
gineered Likelihood Functions may then be combined
with grouping and variance reduction techniques to fur-
ther reduce measurement requirements and runtime.
Any proposed solution to the measurement bottleneck
for the application of VQE should be benchmarked on
various molecules and active spaces to assess its robust-
ness and scaling with system size.
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V. SUPPLEMENTARY INFORMATION
A. Additional classical benchmark data

In this section, we present additional data relevant to
our classical benchmarks. We present the experimental
enthalpies of formation that were used to compute the
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reference combustion enthalpies in Table [SIl In Figure
we plot the basis set error with respect to AV5Z as a
function of the number of orbitals for different methods.
This shows that the def2-TZVPPD basis set (in orange) is
slightly more compact than the AVTZ basis set (in teal),
and yields slightly larger errors for SCF and MP2. How-
ever, for the DFT methods B3LYP and wB97M-V, def2-
TZVPPD is both more compact and significantly closer
to AV5Z results than AVTZ.

In Figure we plot the effect of core correlation
on combustion energies computed with different basis
sets. The ACVDZ and ACVTZ results only differ by 1
or 2 kJ]/mol. In spite of using higher angular momen-
tum functions, the results in the AVTZ and AVQZ basis
sets that lack core polarization functions vary as much
as 6 kJ]/mol, and are very different from the ACVTZ
results. This highlights the well-known importance of
core polarization functions when computing core corre-
lation effects.

In Figure we plot the purely anharmonic contri-
butions to the enthalpy and free energy of combustion
at different temperatures. For the molecules in our test
set, this contribution can be neglected at 298.15 K since
it amounts to at most —0.8 k] /mol. The temperature de-
pendence of the enthalpy correction is pretty low and
is still negligible at 800 K. Because of the temperature-
dependent entropic contribution, the free energy correc-
tion reaches a value of —4 kJ/mol at 800 K, at which
point it cannot be neglected for chemical accuracy. We
also point out that purely anharmonic corrections are
likely to become more important in larger molecules
with softer vibrational modes.

B. Additional data for active space selection

In this section we present additional data regarding
our active space selection procedure, which ultimately
determines the number of qubits necessary for chemical
accuracy. Figure [S4| shows that canonical orbitals pro-
vide a poor basis for truncation of the active space. Of-
ten, the errors do not converge monotonically towards
the full basis set limit when increasing the size of the
active space from 40 to 128 qubits. Moreover, the 128
qubits results is still significantly different from the full
basis result, especially in the larger basis sets.

C. Additional data for measurement scaling

In this section we present some additional plots re-
garding our measurement scaling results. Figure[S5/and
[S6|contain the same data as Figuref} but plotted to high-
light differences between variance estimation methods
and choice of orbital basis, respectively. CISD variances
are expected to be closer to experimental variances than
upper bounds, and generally yield lower values of K,
especially in the case of basis rotation grouping. FNOs
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Molecule

H,O

CO,

CH, |CH,0

C,H,

CyHy | GoH, |CoHgO| C3Hg

CsHg | C3Hy

AHy (k] /mol)

—241.8

—393.5

—74.6| —201

—84

+52.4|+227.4| —234.8 | —103.8| +20 |[+184.9
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TABLE SI. Experimental enthalpies of formation[36] in the gas phase at 298.15 K and 1 atm for computing combustion enthalpies
of molecules in our benchmark set.
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FIG. S1. Log scale error in combustion energies as a function of the number of orbitals for different methods and basis sets. For
each method, the error is computed relative to results in the AV5Z basis set.
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FIG. S3. Anharmonic contributions to enthalpy corrections (top) and to free energy correction (bottom) to the combustion ener-
gies. These are the purely anharmonic contributions that would be added on top of the harmonic contributions.

Molecule CH, |CH4O| CyHg

CHy | GH; |[GHgO| CiHg | C3Hg | C3Hy

CCSD(T)/Q5 + AR 1) [-806.1] —678 | —1434.1

—1328.1

—1262.4| —1281 | —2048.2| —1932.9 | —1858.1

l AEio, extrap €ITOT

[-275] —2.38] —5.84 [ —446 [ —5.61 [ —418 [ —4.65 [ —641 [ —7.71 |

TABLE SII. CCSD(T)/Q5 extrapolated combustion energies combined with harmonic enthalpic contributions AHEE&%(T) at

298.15 K and 1 atm. AEtotextrap includes the sum of high-order, core correlation and anharmonic contributions, similarly to
AEiot in the main text, but using the Q5 extrapolated CCSD(T) energies instead of CCSD(T)/AV5Z.

always yield larger values of K than canonical orbitals,
however they are more efficient at recovering correla-
tion energy and allow us to use smaller active spaces
and thus less qubits.

In Figure[S7] we plot the curves obtained by fitting the
power law in Equation[I7] to the K values obtained for
each individual molecule using basis rotation grouping,
CISD variances and FNOs. All curves are similar, which
is reflected in the similar values of the coefficients a and
b reported in Table

In Figure we plot the values of K obtained for a
fixed number of qubits per electrons, while increasing
the number of active electrons. This represents the scal-
ing of K for different variants of grouping methods, vari-
ance estimation and orbital bases as a function of the
overall size of the system, where both the number of
electrons and the number of qubits increase. Beyond 5
qubits per electrons, our data is insufficient for reliable
extrapolation and is not represented here. Overall, the
scaling coefficients are slightly more favorable than in
the case where only the number of qubits is increased
and the number of electrons is kept fixed.

Figure[S9|show the difference between the implemen-
tation of the RDM constraints method in the fermionic
or in the qubit picture. The original work[24] employed
the fermionic picture implementation, but suggested
that the qubit picture might yield better results. Indeed,
we observe that our qubit implementation (in orange)
performs at least as well or better than our fermionic
implementation (in blue). During our experiments, we
also observed that the final performance depends on the
chosen optimizer.

Figure compares values of K computed with no
grouping (red), QWC grouping (blue) and anticommut-
ing grouping (orange). For all molecules, the core or-
bitals were frozen and the Hamiltonian expressed in the
canonical orbital basis contained 20, 30 or 40 qubits.
The upper bound for the variances was used and co-
variances were set to zero. The anticommuting groups
were determined through the same greedy algorithm
than QWC groups, but checking for anticommutativ-
ity instead of commutativity. In all cases, anticommut-
ing grouping offers an improvement over no grouping,
while being significantly outperformed by QWC group-
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FIG. S4. For each basis set, we plot the error in combustion energy relative to the CCSD(T)/AV5Z calculation including all orbitals.
In each case, we plot the error when keeping 40, 72, 128 or all qubits in the active space, using a canonical orbital basis.

ing. serve that at least a few days of measurement times are

needed at the lower end of the gray region which indi-

cates the range of number of qubits needed for chemical

D. Additional data for runtimes accuracy in the case of combustion reactions. Assuming

a similar scaling, this plot also allows us to estimate a

In Figure we plot our runtime extrapolations for runtime of at least a few hours for the 48 qubit active

each molecule, using the same estimation method than space corresponding to 24 electrons in 24 orbitals for the
for Table [[V] but varying the number of qubits. We ob-  chromium dimer.
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FIG. S5. Values of K computed for molecules in our benchmark set approximating variances using upper bounds (teal) and CISD
data (red). Covariances are set to zero in both cases. The top row uses QWC grouping and the bottom row basis set grouping,
while the left column represents the Hamiltonians in the canonical orbital basis and the right column in the FNO basis. A power
law is fit through the data for each variance approximation method to help visualization.
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FIG. S6. Values of K computed for molecules in our benchmark set using canonical orbitals (green) and FNOs (yellow) to represent
the Hamiltonian. The top row uses QWC grouping and the bottom row basis set grouping. Variances are estimated using CISD
in the left column and using their upper bounds in the right column. Covariances are set to zero in both cases. A power law is fit
through the data for each orbital basis to help visualization.
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FIG. S7. Values of K computed for various molecules using basis rotation grouping with CISD variances and FNOs. For each
molecule, a power law K = aN? is fitted through the data. Values of a and b obtained are reported in Table
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FIG. S8. Values of K computed for molecules of increasing size, while fixing the number of qubits per electrons to 2 (blue), 3
(orange), 4 (red) and 5 (teal). Left column uses QWC grouping while right column contains results with basis rotation grouping.
The top two rows represent the Hamiltonian in the canonical basis and the bottom two in the FNO basis. Finally, variances are
estimated by upper bounds or CISD as indicated. A power law is fit through the data for each number of qubits per electrons.
The range of exponents obtained for the asymptotic scaling is reported on each plot.
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FIG. S9. Values of K computed for various molecules using no grouping and QWC grouping, combined with RDM constraints in
the fermionic picture (blue) or in the qubit picture (orange).
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FIG. S10. Values of K computed for various molecules in active spaces of 20, 30 and 40 qubits, using no grouping (red), QWC
grouping (blue) and anticommuting grouping (orange) with canonical orbitals, upper bounds for the variances and zero covari-
ances. Core orbitals were frozen in all cases when computing the Hamiltonians.
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FIG. S11. Extrapolated runtimes (in s) for molecules in our benchmark set, using the values of K computed for the FNO represen-
tation of Hamiltonians, variances from CISD data and basis rotation grouping. An additional factor of 2 improvement is assumed
from the RDMC technique, and the number of measurements is computed for a precision of 0.5 mHa to leave room for other
uncertainties. Circuit depth is assumed to be 5Ng — 3 two-qubit gates and the two-qubit gate time is assumed to be 100 ns.



	Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver
	Abstract
	I Introduction 
	II Methods
	A Outline of the resource and performance assessment
	B Benchmark data set
	C Methodology for resource estimation
	1 Classical benchmarks
	2 Number of qubits
	3 Measurement analysis


	III Results and discussion
	A Benchmarking classical chemistry methods
	B Number of qubits
	C Measurement estimation
	1 Performance of Hamiltonian decomposition methods
	2 Variance reduction

	D Overall qubit and runtime requirements

	IV Conclusions
	 Acknowledgement 
	 References
	V Supplementary Information
	A Additional classical benchmark data
	B Additional data for active space selection
	C Additional data for measurement scaling
	D Additional data for runtimes



