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Abstract

Quantum Boltzmann machines are natural quantum generalizations of Boltzmann machines that

are expected to be more expressive than their classical counterparts, as evidenced both numerically

for small systems and asymptotically under various complexity theoretic assumptions. However,

training quantum Boltzmann machines using gradient-based methods requires sampling observ-

ables in quantum thermal distributions, a problem that is NP-hard. In this work, we find that the

locality of the gradient observables gives rise to an efficient sampling method based on the Eigen-

state Thermalization Hypothesis, and thus through Hamiltonian simulation an efficient method for

training quantum Boltzmann machines on near-term quantum devices. Furthermore, under realis-

tic assumptions on the moments of the data distribution to be modeled, the distribution sampled

using our algorithm is approximately the same as that of an ideal quantum Boltzmann machine. We

demonstrate numerically that under the proposed training scheme, quantum Boltzmann machines

capture multimodal Bernoulli distributions better than classical restricted Boltzmann machines

with the same connectivity structure. We also provide numerical results on the robustness of our

training scheme with respect to noise.
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I. INTRODUCTION

Boltzmann machines are one of the earliest neural network architectures in classical ma-

chine learning [1], and have been used in both supervised and unsupervised learning settings.

They serve as a versatile tool for learning real-world data distributions. In essence, a classi-

cal Boltzmann machine is a thermal set of spins that interact under an Ising Hamiltonian,

which is diagonal in the natural basis of states representing the combination of spin-ups and

spin-downs of the system.

Recent efforts in quantum computation have unveiled that by considering quantum Hamil-

tonians which are non-diagonal and under certain natural complexity theoretic assumptions,

one is able to perform learning tasks more efficiently than with classical computation [2–

4]. However, an outstanding practical question is then how to efficiently sample gradient

observables in quantum thermal states, a necessary condition for the efficiency of training

quantum Boltzmann machines. Some proposals in the literature point toward using quan-

tum annealing devices as sources of these thermal states, though due to the challenges in

controlling the interaction between the quantum annealer and its external thermal bath, the

thermalization process often “freezes out” before thermal equilibrium is established [2, 5].

Furthermore, efforts in using quantum annealers for Boltzmann machines are often chal-

lenged by the inherent noise, connectivity, and form of coupling allowed in the annealing

device [6].

On gate-model quantum computers, variational methods for producing classical ther-

mal states have been proposed [7, 8] using the Quantum Approximate Optimization Al-

gorithm [9], though for an N -spin system these methods require N ancilla qubits; fur-

thermore, [7] only considers diagonal Hamiltonians. Other variational methods require no

ancilla qubits [10, 11], though such approaches often require retraining the ansatz for differ-

ent thermal states, which may be costly when many thermal states must be sampled from

in succession as in the training of quantum Boltzmann machines. Nonvariational methods

include generalizations of classical Monte Carlo methods to the quantum regime [12–14], but

may not be practical on near-term quantum devices. Finally, there are classes of proposed

methods that rely on various assumptions on the underlying quantum system, such as tak-

ing a mean field approximation [15] or relying on short correlation lengths in the underlying

system [16], neither of which are guaranteed to hold in classical or quantum Boltzmann
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machines.

Here, we present a heuristic method that allows one to prepare a pure state which locally

approximates a (potentially highly correlated) quantum thermal state at a known temper-

ature using only O (1) ancilla qubits and time evolution under a chaotic, tunable quantum

Hamiltonian. Our construction is supported by the Eigenstate Thermalization Hypothesis

(ETH) [17–19], which is a statement about how subsystems of pure states thermalize under

certain conditions. Although analytical results on the subject are sparse, ETH has been sub-

stantiated in a broad set of regimes both numerically [20–22] and experimentally [23, 24]. By

utilizing chaotic quantum Hamiltonians in our quantum Boltzmann machines, we are able

to perform a quantum quench procedure to locally sample observables in quantum thermal

states. Furthermore, our scheme is set up such that there is a method of approximately

obtaining the inverse temperature of the system, which is needed for estimating the correct

sign and magnitude of the gradient of the quantum Boltzmann machine loss function.

The remainder of this paper is organized as the following: Sec. II describes the basic

setting of Boltzmann machines, both classical and quantum. Sec. III describes the Eigenstate

Thermalization Hypothesis, its conditions, and what it predicts. Sec. IV describes our

thermal state preparation protocol, and Sec. V demonstrates numerical simulations of our

procedure. Finally, we conclude and discuss future work in Sec. VI.

II. BOLTZMANN MACHINES

The goal of generative modeling in machine learning is to train a model that generates

data points that resemble a given set of data. In particular, the Boltzmann machine is an

energy-based generative model that models the given data set as a thermal state under the

classical Ising energy function

E (z;θ) =
∑

i

bizi +
∑

i,j

wijzizj, (1)

where z ∈ {−1, 1}n is a binary vector and θ = {b,w} are the model parameters. In practice,

the spins are separated into a bipartite structure of visible units and hidden units such that

approximate sampling of the visible units of these thermal states can be performed through

Gibbs sampling [25]. To make this structure explicit by labeling the nv visible units with υ
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indices and the nh hidden units with η indices, the energy function is of the form:

E (z;θ) =
∑

i

bizi +
∑

υ,η

wυηzυzη. (2)

Boltzmann machines with this internal structure are termed restricted Boltzmann machines

(RBMs)—a visual comparison between a general Boltzmann machine (Fig. 1a) and an RBM

(Fig. 1b) is given in Fig. 1.

Quantum Boltzmann machines (QBMs) are natural quantum generalizations of classical

Boltzmann machines [2]. They are described by a quantum thermal probability distribution

pβ (zv;θ) =
tr
(
Πzve

−βHQBM(θ)
)

tr
(
e−βHQBM(θ)

) (3)

and, as introduced in [2], defined by a semi-restricted transverse Ising Hamiltonian

HQBM (θ) =
∑

i

Γiσ
x
i +

∑

i

biσ
z
i +

∑

υ,i

wυiσ
z
υσ

z
i , (4)

where zv ∈ {−1, 1}nv , θ = {Γ , b,w}, and Πzv is a projector of the visible units of the QBM

onto zv. Here, semi-restricted means that the only disallowed connections are between the

hidden units—a visual representation is given in Fig. 1c. In general, one could consider a

more general Hamiltonian given by [3]:

HQBM (θ) = Hoff-diag (θoff-diag) +
∑

i

biσ
z
i +

∑

υ,i

wυiσ
z
υσ

z
i , (5)

where Hoff-diag (θoff-diag) is composed of terms that are not diagonal in the computational

basis. For instance, taking Hoff-diag to be composed of tunable σxi and σxi σ
x
j terms makes

the ground state problem of H (θ) QMA-complete, and therefore is generally believed to

be more expressive than the Hamiltonian of Eq. (4), which is generally believed to not be

QMA-complete [26]. We also consider QBMs with the same connectivity as RBMs; see

Appendix B for the details of all Hamiltonian models we consider.

In both the classical and quantum cases, the parameters θ are trained such that the

negative log-likelihood

L (θ) = −
∑

zv

pdata (zv) log (pβ (zv;θ)) (6)

is minimized, where pβ (zv;θ) is the thermal distribution corresponding to either a classical

Boltzmann machine or a QBM. For QBMs, gradients of L are not efficiently samplable;
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bi
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FIG. 1. (a) An example Boltzmann machine. The units are coupled with interaction weights wij .

Each unit also has a local bias field bi. (b) An example RBM. Samples are drawn from the visible

units, and correlations between visible units are created through couplings with the hidden layer.

The visible units are coupled with the hidden units through interaction weights wυη. Each unit

also has a local bias field bi. (c) An example QBM with a semi-restricted architecture. The units

are coupled with interaction weights wij . Each unit also has a local bias field bi. Furthermore,

off-diagonal fields and interactions are included in the Hamiltonian (see Sec. II).

thus, in practice, one trains on an upper bound of the loss function given by [2]:

L̃ (θ) = −
∑

zv

pdata (zv) log

(
tr
(
e−βHv(θ)

)

tr
(
e−βHQBM(θ)

)
)
, (7)

where

Hzv (θ) = HQBM (θ)− ln (Πv) . (8)

Training a QBM on L̃ not only generally prevents finding the optimal QBM parameters

for the true loss function L, but also makes training θoff-diag generally impossible [2]. Using

clever generalized measurements it is possible to train these off-diagonal elements, though

deriving such measurements requires prior knowledge of the data distribution and thus is

generally difficult in practice [3]. In this work, we only consider training on the upper bound

L̃ of the true loss function L. We note that it is also possible to train QBMs on a relative

entropy loss function [3, 4], but we do not explore that method in our work.

For a generic QBM, derivatives of Eq. (7) with respect to the diagonal parameters {b,w}
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are of the form:

∂biL̃ (θ) = β
∑

zv

pdata (zv)

(
tr
(
σzi e

−βHzv (θ)
)

tr (e−βHzv (θ))
− tr

(
σzi e

−βHQBM(θ)
)

tr
(
e−βHQBM(θ)

)
)
, (9)

∂wijL̃ (θ) = β
∑

zv

pdata (zv)

(
tr
(
σzi σ

z
j e
−βHzv (θ)

)

tr (e−βHzv (θ))
− tr

(
σzi σ

z
j e
−βHQBM(θ)

)

tr
(
e−βHQBM(θ)

)
)
. (10)

For an observable Oθ corresponding to the θ-component of the gradient, this can be equiv-

alently expressed as:

∂θL̃ (θ) = β
(
Ezv∼pdata

[
〈Oθ〉zv

]
− 〈Oθ〉QBM

)
, (11)

where the first expectation value is averaged with respect to the data distribution and the

second with respect to the model distribution. Due to the form of Hv, the first term of

these derivatives—the positive phase—is efficiently computable classically [2]. The second

term—the negative phase—is not believed to be efficiently computable in general, and if

done exactly would require sampling from a general quantum thermal distribution, which is

NP-hard [27]. Our main contribution is developing a practical heuristic method for approx-

imately sampling the local observables of Eq. (11) from this quantum thermal distribution,

taking advantage of the low weight of the operators that must be sampled.

III. LOCAL QUANTUM THERMALIZATION

A. The Eigenstate Thermalization Hypothesis

A necessary prerequisite of training QBM states is being able to sample local observables

from thermal states at a known temperature. In general, preparing such thermal states

is NP-hard [27]. However, isolated quantum systems are known to thermalize locally; the

mechanism under which this is believed to occur is known as the Eigenstate Thermalization

Hypothesis (ETH) [17–19]. ETH states that subsystem thermalization occurs on the level of

eigenstates of the system; namely, it gives an ansatz for the matrix elements of observables

in the eigenbasis {|Ei〉} of the Hamiltonian [19, 28]:

〈Ej|O |Ei〉 = Oω

(
E
)
δij + e−

S(E)
2 fO

(
E,Ei − Ej

)
Rij. (12)

Here, Ei = 〈Ei|H |Ei〉 and E =
Ei+Ej

2
is the average energy. Oω

(
E
)

is the expectation

value of the microncanonical ensemble at an energy E with an energy window ω, which is
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given by:

Oω

(
E
)

=
∑

E′∈[E−ω2 ,E+ω
2 ]

|E ′〉 〈E ′| , (13)

where ω vanishes in the thermodynamic limit (that is, as the system size nv is taken to

infinity; usually, ω is taken to be O
(

E√
nv

)
). Finally, S is the microcanonical entropy, fO is

a smooth function, and Rij is a complex random variable with zero mean and unit variance.

Though unproven analytically, this ansatz is conjectured to hold for all operators with

support on less than half of the system in nonintegrable systems [22].

Furthermore, in the thermodynamic limit if an operator O has equal microcanonical and

canonical expectation values given a Hamiltonian H, the following holds:

〈E|O |E〉 =
tr
(
Oe−β(E)H

)

tr (e−β(E)H)
, (14)

where β (E) is such that:

E =
tr
(
He−β(E)H

)

tr (e−β(E)H)
. (15)

The microcanonical and canonical ensembles generically agree on the expectation values

of observables with a volume of support sublinear in n for nonintegrable systems in the

thermodynamic limit (assuming the entropy is concave in E, which is typical in most physical

settings) [29, 30].

In short, Eq. (14) is expected to hold for all observables with a volume of support sublinear

in n in the thermodynamic limit [31], for all systems that exhibit an equivalence between

the microcanonical and canonical ensembles [22, 32]. For systems that do not thermalize in

the conventional sense, such as integrable systems and many-body localized systems, this

equivalence is generalized to an equivalence between the microcanonical ensemble and the

generalized canonical ensemble [19, 33, 34]; we leave the consideration of such systems to

future work.

B. Quantum Quench Dynamics and Sampling Local Observables

Given that ETH holds in the sense of Eq. (14) for a given system, we now show that

there exists a procedure to approximately sample observables O with a constant volume of

support k through only time evolution. First, we assume that the system Hamiltonian is
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composed of two noncommuting terms

H = H0 +H1, (16)

where an eigenstate
∣∣E(0)

〉
of H0 is easy to prepare. Then, we consider the time evolution:

|ψ (t)〉 = e−iHt
∣∣E(0)

〉
; (17)

this procedure is a called a quench. The long-time average of 〈ψ (t)|O |ψ (t)〉 with Eq. (14)

then gives:

O ≡ lim
t→∞

1

t

t∫

0

dt′ 〈ψ (t′)|O |ψ (t′)〉 ≈
tr
(
Oe−β(E

(0))H
)

tr
(

e−β(E
(0))H

) . (18)

This approximation is exact in the limit n→∞, given that energy fluctuations in
∣∣E(0)

〉
are

small; β
(
E(0)

)
is an effective inverse temperature dictated by the initial state

∣∣E(0)
〉
. In fact,

it turns out that this equivalency is not only true in average, but also pointwise in time in

the long time limit; in practice, however, the thermalization time is modest compared to the

inverse norm of the Hamiltonian [19]. We give more details on the necessary assumptions

and the degree of approximation in Appendix A. Local thermalization after a quantum

quench has been verified multiple times experimentally, including through the use of both

superconducting qubits [23] and ultracold atoms [24].

IV. TRAINING QBMS THROUGH ETH

The quench procedure described in Sec. III B prescribes a scheme with which to sample

k-local observables in thermal distributions; as the observables that must be sampled are

1- and 2-local as given in Eq. (9) and Eq. (10), these observables can be sampled using the

given quench procedure [35]. However, when using this scheme, β in general is dependent

on θ; though one could in principle control β through coupling the QBM to a large bath,

this would require many ancilla qubits. Instead, if we allow β to become a function of θ,

there are corrections to derivatives with respect to θ of the form:

gθ (θ) =
∂β (θ)

∂θ

∑

zv

pdata (zv)

(
tr
(
Hzv (θ) e−β(θ)Hzv (θ)

)

tr (e−β(θ)Hzv (θ))
− tr

(
HQBM (θ) e−β(θ)HQBM(θ)

)

tr
(
e−β(θ)HQBM(θ)

)
)
.

(19)

Thus, we need a method to estimate β at various θ.
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To do this, we couple the QBM system to an ancilla system of O (1) qubits we dub

the thermometer system. We fix a thermometer Hamiltonian of the same form as the QBM

Hamiltonian with fixed parameters (see Appendix B). We also fix an interaction Hamiltonian

between the QBM and thermometer systems, given by:

Hint =
∑

υ′,a

wυ′aσ
z
υ′σ

z
a, (20)

where υ′ runs over a subset of the visible units of the QBM and a over a subset of the

thermometer system; see Fig. 2 for a visual representation of the full system. We take Hint

to be sparse compared to the QBM Hamiltonian such that the measured local temperature

of the thermometer system is approximately equal to the local temperature of the QBM

system [22]. We give explicit descriptions of the various QBM/thermometer pair systems

we study in Appendix B.

QBM

wυη

waa′
bηH

id
d

en
U

n
it

s

bυ

V
isib

le
U

n
its

ba

Thermometer

FIG. 2. An example QBM/thermometer combination. The thermometer is weakly coupled to the

QBM such that temperature measurements of the thermometer approximately agree with those of

the entire system (see Sec. IV).

Having set the QBM/thermometer Hamiltonian, we begin the sampling procedure in the

pure state:

|ψ (t = 0)〉 = |+〉⊗n , (21)

which is an eigenstate of the off-diagonal part of the total Hamiltonian

H = HQBM +Htherm +Hint. (22)
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Then, we perform the time evolution:

|ψ (t)〉 = e−iHt |ψ (0)〉 (23)

for t ∈ {Ti}i ≡ T. Under the conditions described in Sec. III B, we have for all sites i, j

that:

Et∼T [〈ψ (t)|σzi |ψ (t)〉] ≈ tr
(
σzi e

−βH)

tr (e−βH)
, (24)

Et∼T
[
〈ψ (t)|σzi σzj |ψ (t)〉

]
≈ tr

(
σzi σ

z
j e
−βH)

tr (e−βH)
, (25)

Et∼T [〈ψ (t)|HQBM |ψ (t)〉] ≈ tr
(
HQBMe−βH

)

tr (e−βH)
, (26)

Et∼T [〈ψ (t)|Htherm |ψ (t)〉] ≈ tr
(
Htherme−βH

)

tr (e−βH)
; (27)

for details on the errors of these approximations, see Appendix A. In principle, one may

choose |T| = 1 (see Appendix A), though choosing a larger |T| reduces the impact of

fluctuations of observables away from their time average. In our training simulations in

Sec. V B, we take |T| = 2.

To estimate β (θ), we use the fact that Eq. (27) defines β in the same sense as Eq. (15). As

Htherm is known and has support on only O (1) qubits, one can numerically find β by inverting

Eq. (27) after estimating the expectation value of the thermometer Hamiltonian through

sampling. Furthermore, given that ‖Hint‖ is much smaller than ‖HQBM‖ and ‖Htherm‖, we

expect that the measured inverse temperature of the thermometer is approximately that

of the QBM [22]. Thus, we can classically compute or approximately sample all terms in

Eq. (9), Eq. (10), and Eq. (19), and thus can train the parameters of the QBM efficiently.

Note, however, that drawn samples from the trained QBM/thermometer combination in

general will not be able to recreate the many-body correlations of generic data distributions;

this is because ETH only guarantees thermalization on small subsystems of the QBM. How-

ever, if these higher order correlations can be expressed in terms of lower order correlations,

the QBM/thermometer combination can still potentially model the distribution. To see this,

assume a fixed model for the data distribution over nv variables completely described by m

parameters. As there are O
(
nkv
)

components of the kth moment of the distribution, the data

distribution model is completely determined by the first k moments of the distribution [36],

where

m = O
(
nkv
)
. (28)
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Thus, even though samples from the QBM/thermometer combination can only approximate

the first o (nv) moments of the true QBM sample distribution (see Appendix A), this is

sufficient for completely reconstructing classes of distributions completely parametrized by

o (nnvv ) parameters through the method of moments [37]. For instance, many classical

data distributions—including distributions of images [38]—can be modeled as a mixture of

Bernoulli distributions of the form:

p (zv) =
1

m

m∑

i=1

pBernoulli (zv; pi, ci) , (29)

where

pBernoulli (zv; p, c) = pnv−|zv−c
2 | (1− p)|

zv−c
2 | (30)

is a Bernoulli distribution centered at c (here, |a| denotes the number of components equal

to −1 of a). As this distribution is completely described by only 2m parameters, for m =

o (nnvv ) the parameters of the model (and thus the entire data distribution, assuming a fixed

model) can be estimated by the QBM/thermometer combination. Furthermore, in practice,

it seems numerically that sampling directly from the QBM/thermometer combination allows

one to approximately sample from p without explicitly reconstructing the model through

the low order moments (see Sec. V B).

V. NUMERICAL SIMULATIONS

A. Numerical Verification of Local Thermalization

We analyzed the distribution of energy level spacings to numerically verify the local ther-

malization of our quantum system. Apart from a few counterexamples, ideal ergodic systems

obey a Wigner–Dyson distribution of energy level spacings, while ideal nonthermalizing sys-

tems obey a Poisson distribution in energy level spacings; in practice, systems interpolate

between these two extremes [19, 39]. As an ansatz for this interpolating behavior we use the

Berry–Robnik distribution [39], which is parametrized by some ρ such that for ρ = 0 the

distribution is identical to a Wigner–Dyson distribution and for ρ = 1 the distribution is

identical to a Poisson distribution. In all cases, we normalize our empirical distributions by

the median energy level spacing. Fig. 3 is a typical fit of the Berry–Robnik distribution to

the energy level spacing distribution of our trained QBM/thermometer combination. Fig. 4
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shows fits of the Berry–Robnik interpolation parameter ρ for various values of the mean

single-site transverse field Γ for a restricted transverse Ising model, normalized by the root

mean square of the interaction weights between the QBM and thermometer
√
w2

int. We see

for 1 <∼ Γ√
w2

int

<∼ 3 that our QBM/thermometer combination has an energy level spacing

distribution consistent with that of a chaotic system. Furthermore, we see as Γ → 0 that

this is no longer true; this is due to the restricted transverse Ising model reducing to the

classical restricted Ising model in this limit, which conserves local spin and therefore is not

expected to thermalize to a canonical distribution locally.

0 1 2 3 4 5 6
Level spacing per median level spacing

0.0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

FIG. 3. A typical fit of the Berry–Robnik distribution to the energy level spacing distribution of

our trained QBM/thermometer combination. The trained model was a restricted transverse Ising

model with Γ√
w2

int

= 1 (see Sec. V A), six visible units, one hidden unit, and two thermometer

units.

We also verified the local thermalization of gradient observables using our quenching
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Γ/

√
w2

int

0.2

0.4

0.6

0.8

ρ

FIG. 4. The Berry–Robnik interpolation parameter ρ plotted as a function of the normalized mean

single-site transverse field Γ√
w2

int

(see Sec. V A). The trained models were restricted transverse Ising

models with six visible units, one hidden unit, and two thermometer units. Error bars denote one

standard error over five instances.

procedure by measuring the median difference in gradient observable expectation value,

normalized over the maximum possible error of the observable (namely, for Pauli matrices,

two). We performed our numerical experiments on constructed models with parameters

given in Appendix B, chosen to approximate typical values of the parameters of Hamiltonians

following our training procedure. Fig. 5 demonstrates the local thermalization of gradient

observables (i.e. the observables of Eq. (11)) for various numbers of visible units. We

see that the normalized error in observable expectation value decreases for larger system

size for the restricted architectures, but this behavior is less obvious for the semi-restricted
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architecture; we believe this is due to the largeness of energy fluctuations of the system, as

described in Appendix A. Furthermore, the time needed for the system to thermalize is on

the order of the reciprocal mean single-site transverse field 1/Γ , as demonstrated in Fig. 6.

The thermalization time seems independent of the system size, which is comparable with

similar numerical experiments [19]. Finally, the equilibration of the thermometer with the

system occurs extremely quickly, with the measured inverse temperature βtherm as predicted

by the thermometer Hamiltonian quickly converging to the measured inverse temperature

βtotal as predicted by using the full system Hamiltonian, as demonstrated in Fig. 7.

B. Numerical Verification of Training

To analyze the efficacy of training quantum Boltzmann machines using our methods, we

numerically simulated training QBM/thermometer combinations on mixtures of Bernoulli

distributions of the form given in Eq. (29). We took m = 8, pi = 0.9, uniformly random

ci, and nv ∈ {2, 3, 4, 5, 6, 7, 8} for a variety of models described in Appendix B. The exact

training parameters we used are described in Appendix C.

To evaluate the performance of our training procedure, we sampled from both the data

distribution and the trained models to estimate the Kullback–Leibler (KL) divergence [40]

of the data distribution with the model distribution

DKL ( pdata|| pmodel) = −
∑

zv

pdata (zv) ln

(
pmodel (zv)

pdata (zv)

)
(31)

and the Akaike information criterion (AIC) [41]

AIC (θ) = 2 (|θtrainable|+ L (θ)) , (32)

where θtrainable are the trainable parameters of the model and L is the negative log-likelihood

given in Eq. (6). The KL divergence—though not a true metric—is a premetric between

probability distributions. The AIC is similar, though also penalizes the number of trainable

parameters in the model. We also implemented an amplitude damping channel with single-
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(a) Semi-restricted Transverse Ising Model
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(b) Restricted Transverse Ising Model
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(c) Restricted XX Model

FIG. 5. The median error in gradient observable using our QBM/thermometer scheme for multiple

Hamiltonian models as a function of the number of visible units of the system (see Sec. V A). The

lack of a convergence in the thermodynamic limit for the semi-restricted transverse Ising model is

most likely due to a nonvanishing variance of the energy expectation value of the system in the

thermodynamic limit (see Appendix A). The studied models each had one hidden unit and two

thermometer units; for greater detail on the studied systems, see Appendix B. Error bars denote

one standard error over five instances and over all gradient observables.
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FIG. 6. The median error in gradient observable using our QBM/thermometer scheme for multiple

Hamiltonian models as a function of the quench evolution time (see Sec. V A). The studied models

each had one hidden unit and two thermometer units; for greater detail on the studied systems,

see Appendix B. Shading denotes one standard error over five instances.

qubit Kraus operators:

E
(a)
1 (t) =


1 0

0 e
− t

2T1


 , (33)

E
(a)
2 (t) =


0

√
1− e

− t
Tφ

0 0


 , (34)
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FIG. 7. The mean normalized error in the inverse temperature of the thermometer for multiple

Hamiltonian models as a function of the quench evolution time (see Sec. V A). The studied models

each had one hidden unit and two thermometer units; for greater detail on the studied systems,

see Appendix B. Shading denotes one standard error over five instances.

and a dephasing channel with single-qubit Kraus operators:

E
(d)
1 (t) =


1 0

0 e
− t
Tφ


 , (35)

E
(d)
2 (t) =


0 0

0

√
1− e

− 2t
Tφ


 , (36)

where t is randomly sampled from the distribution of times used to perform the Hamil-

tonian evolution in the quench procedure (see Sec. III B). We additionally estimated the

17



effects of sampling noise by including Gaussian noise on the sampling of each operator (see

Appendix C).

In Fig. 8, we plot the minimum reached KL divergence during training as a function of the

dimensionality of the data distribution nv; similarly, in Fig. 9, we plot the minimum reached

AIC. To summarize the performance of our QBM/thermometer combination compared with

an exact QBM (i.e. one with oracle access to quantum thermal states), in Fig. 10 we plot

the ratio between the difference in optimized KL divergences between a QBM/thermometer

combination and an ideal QBM, with the difference between an RBM and an ideal QBM.

We notice that, for all considered data distribution instances and models, the QBM/

thermometer combination performs similarly to that of an exact QBM with perfect oracle

access to quantum thermal states on learning this class of data distributions, even with a

finite coherence time. Furthermore, for all considered data distribution instances and models,

the QBM/thermometer combination outperforms the classical RBM in KL divergence. For

our class of data distributions, the extra connectivity between visible units allowed by QBMs

did not offer a significant performance advantage compared to the number of additional

trained parameters, as evidenced by empirical measurements of the AIC. Furthermore, the

restricted XX model does not seem to perform as well as the restricted transverse Ising

model, even though the model is universal for quantum computation [42]. We believe this is

because the upper bound on the loss function given in Eq. (7) is loose compared to the exact

loss function given in Eq. (6), due to the positive phase of the XX gradient terms vanishing

when using Eq. (7) for training. This could be corrected through the use of relative entropy

training [3, 4], which we will consider in future work.

C. Performance Scaling With Noise

To test the noise resilience of our training scheme, we tested the performance of our

heuristic for multiple simulated coherence times. As shown in Fig. 11 for the restricted

transverse Ising model, the plotted coherence time is T1 = Tφ in units of 1
Γ

, where Γ is the

mean single-site transverse field. Above a certain coherence time threshold, the performance

of the QBM/thermometer combination is approximately independent of the system noise.

For comparison, state of the art neutral atom quantum simulators that naturally implement a

similar Hamiltonian achieve both T1 and Tφ times of approximately 75 in these units [43, 44].
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FIG. 8. The training performance of our combined QBM/thermometer scheme on nv-dimensional

Bernoulli mixture models for multiple Hamiltonian models. A lower KL divergence with the data

distribution corresponds with better performance. For all studied models, the QBM/thermometer

combination performs similarly well as the exact QBM. The studied models are described in greater

detail in Appendix B. Error bars denote one standard error over five instances.

VI. CONCLUSION

In this work we give an efficient heuristic approach for training quantum Boltzmann

machines through Hamiltonian simulation based on ETH. As our method relies only on time

evolution under ergodic, tunable quantum Hamiltonians, our results can be implemented on

NISQ devices [45] and quantum simulators. Though there is numerical evidence of the

noise-resiliance of our algorithm, further noise mitigation techniques for NISQ devices have
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FIG. 9. The training performance of our combined QBM/thermometer scheme on nv-dimensional

Bernoulli mixture models for multiple Hamiltonian models, also taking into account the number of

trained parameters. A lower AIC with the data distribution corresponds with better performance,

with a linear penalty applied for the number of trained parameters. In terms of AIC, the semi-

restricted transverse Ising model for even an exact QBM is outperformed by an RBM due to the

many visible-visible layer couplings in this model. The studied models are described in greater

detail in Appendix B. Error bars denote one standard error over five instances.

been developed and could be deployed for use in conjunction with our algorithm [46–50].

Furthermore, even on small quantum devices, QBMs could work in tandem with classical

machine learning architectures to create an architecture that is more expressive than either

the small QBM or classical machine learning architecture alone.
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FIG. 10. The ratio of the difference between the minimum achieved KL divergence for a QBM/

thermometer combination and an exact QBM, and that of an RBM and an exact QBM is plotted

for various mixed Bernoulli distribution dimensions and for multiple Hamiltonian models. Train-

ing performance below the dashed line demonstrates that the QBM/thermometer combination

outperforms the classical RBM. Error bars denote one standard error over five instances.

The techniques developed in this work may also be useful for the training of general vari-

ational quantum algorithms which need to sample many observables in order to evaluate the

algorithm’s objective function; for example, the Variational Quantum Eigensolver algorithm,

which trains on the measured energy of an ansatz state [51]. Instead, one could use tem-

perature measurements of a weakly coupled, small thermometer system as an approximate

proxy for these energy evaluations; a course training could begin training on the temperature

evaluations, and then refine training with sampling the true objective function. Addition-

ally, one could consider the generalized thermalization of integrable systems to generalized
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FIG. 11. The training performance of our combined QBM/thermometer scheme on six-dimensional

Bernoulli mixture models for a restricted transverse Ising model as a function of the system co-

herence time, in units of the inverse mean single-site transverse field 1
Γ

(see Sec. V C). The dashed

lines correspond to the mean performance on the same data sets for an RBM and an exact QBM.

Above a certain coherence time threshold, the performance of the QBM/thermometer combination

is approximately independent of the system noise. The shaded regions and error bars correspond

to a confidence interval of one standard error over five instances.

canonical ensembles in training QBMs to take advantage of known symmetries in the data

distribution. We hope to explore this and other potential applications in the near future.

We also look forward to working with experimental collaborators on potential experimental

implementations of this work.
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Appendix A: Local Thermalization and QBM Quench Dynamics

Let us now show Eq. (18) in more detail, beginning only from the ETH ansatz of Eq. (12);

our construction is based on one presented in [19]. Once again, consider a quench of the

form discussed in Sec. III B, with:

|ψ (t)〉 =
∑

i

cie
−iEit |Ei〉 . (A1)

Then, given an operator O, we have that:

O ≡ lim
t→∞

1

t

t∫

0

dt′ 〈ψ (t′)|O |ψ (t′)〉

= lim
t→∞

1

t

t∫

0

dt′
∑

i,j

c∗i cje
−i(Ej−Ei)t′ 〈Ei|O |Ej〉

=
∑

i

|ci|2 〈Ei|O |Ei〉 .

(A2)

Taking O to have a volume of support k = o (n) and using the ETH ansatz of Eq. (12), we

then have (assuming S = Ω (n)) that:

O =
∑

i

|ci|2Oω (Ei) +O
(
e−

n
2

)
. (A3)

Defining:

E ≡ 〈ψ (0)|H |ψ (0)〉 =
∑

i

|ci|2Ei, (A4)

we Taylor expand Oω (Ei) about E to find that:

O =
∑

i

|ci|2
(
Oω (E) + (Ei − E)

dOω (E ′)

dE ′

∣∣∣∣
E

+
1

2
(Ei − E)2 d2Oω (E ′)

d (E ′)2

∣∣∣∣
E

)

+O

(
e−

n
2 +

Ei
[
|Ei − E|3

]

E3

)

= Oω (E) +O

(
e−

n
2 +

Ei
[
|Ei − E|2

]

E2

)
.

(A5)
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Thus, the degree of approximation is good so long as
Ei[|Ei−E|2]

E2 is small.

It is also true that the average difference between 〈ψ (t)|O |ψ (t)〉 and its long-time average

O is small [19]. We calculate using the ETH ansatz of Eq. (12) that:

lim
t→∞

1

t

t∫

0

dt′ 〈ψ (t′)|O |ψ (t′)〉2 = lim
t→∞

1

t

t∫

0

dt′
∑

i,j,k,l

c∗i cjc
∗
kcle

−i(Ej+El−Ei−Ek)t′

× 〈Ei|O |Ej〉 〈Ek|O |El〉

=

(∑

i

|ci|2 〈Ei|O |Ei〉
)2

+
∑

i 6=j

|ci|2 |cj|2 |〈Ei|O |Ej〉|2 .

(A6)

We therefore have from Eq. (A2) and the ETH ansatz of Eq. (12) that:

lim
t→∞

1

t

t∫

0

dt′
(
〈ψ (t′)|O |ψ (t′)〉2 −O2

)
=
∑

i 6=j

|ci|2 |cj|2 |〈Ei|O |Ej〉|2

≤ max
i 6=j
|〈Ei|O |Ej〉|2

= O
(
e−n
)
,

(A7)

where once again we have assumed that S = Ω (n).

Thus, assuming that expectation values of O in the microcanonical and canonical ensem-

bles are equivalent up to O
(
k
nv

)
terms (which is true for nonintegrable systems when the

microcanonical entropy is concave in the energy and the energy is extensive in the system

volume) [22, 29, 30, 32, 52], we have that:

〈ψ (t)|O |ψ (t)〉 =
tr
(
Oe−β(ψ)H

)

tr (e−β(ψ)H)
+O

(
k

nv
+

Em
[
|Em − E|2

]

E2

)
(A8)

for t sufficiently large. When described in the language of the trace distance between the

partial traces to a subsystem of size k of |ψ (t)〉 〈ψ (t)| and those of a canonical ensemble,

this is equivalent to the subsystem Eigenstate Thermalization Hypothesis [32].

Thus, all that remains to be shown is that
Em[|Em−E|2]

E2 is small; for restricted QBM systems

with few hidden units, this is indeed true. Considering the quench procedure described in

Sec. III B where we take |ψ (0)〉 to be diagonal in the X basis for simplicity, this term is
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given by [19, 20]:

Em
[
|Em − E|2

]

E2
=
〈ψ (0)|H2 |ψ (0)〉 − 〈ψ (0)|H |ψ (0)〉2

〈ψ (0)|H |ψ (0)〉2

=

〈ψ (0)|
(∑

i

biσ
z
i +

∑
υ,η

wυησ
z
υσ

z
η

)2

|ψ (0)〉

〈ψ (0)|H |ψ (0)〉2

=

∑
i

b2
i +

∑
υ,η

w2
υη

〈ψ (0)|H |ψ (0)〉2

= O

(
n+ nvnh

n2

)
.

(A9)

Therefore, as long as the number of weights is subquadratic in the system size (i.e. nvnh =

o (n2)), then:
Em
[
|Em − E|2

]

E2
= o (1) . (A10)

Due to the apparent strength of QBMs with small numbers of hidden units (see Sec. V B

and [3]), this is not an unreasonable assumption. However, this analysis does not hold for

semi-restricted or unrestricted models, and indeed for numerically simulated generic semi-

restricted transverse Ising models it seems that this convergence does not hold in the ther-

modynamic limit (see Sec. V A). On actual training data, though, our QBM/thermometer

scheme does seem to train well, even for the semi-restricted transverse Ising model. This

could be due to Eq. (A9) giving, in general, that the necessary condition for thermalization

is:
∑

i,j

w2
ij = o (n) ; (A11)

thus, the apparent thermalization of even nonrestricted QBMs in Sec. V B may be due to

visible-visible couplings being small during training on our considered data distributions.

Alternatively, it could be due to our training procedure being robust to even constant errors

in estimates of the gradient, and only strongly depending on—for instance—the sign of the

gradient. We leave further exploration of this behavior to future work.

Appendix B: QBM/Thermometer Systems

In our numerical experiments, we consider the Hamiltonians given in Table I; in all

instances, we take the QBM and thermometer models to be the same. Furthermore, the in-
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Model QBM/Thermometer Hamiltonian

Semi-restricted Transverse Ising Model HQBM/therm (θ) =
∑
i
Γiσ

x
i +

∑
i
biσ

z
i +

∑
υ,i
wυiσ

z
υσ

z
i

Restricted Transverse Ising Model HQBM/therm (θ) =
∑
i
Γiσ

x
i +

∑
i
biσ

z
i +

∑
υ,η
wυησ

z
υσ

z
η

Restricted XX Model HQBM/therm (θ) =
∑
i
Γiσ

x
i +

∑
i
biσ

z
i +

∑
υ,η
wυη

(
σxυσ

x
η + σzυσ

z
η

)

TABLE I. The various models considered in our numerical experiments.

teraction Hamiltonian between the QBM and thermometer is always of the form of Eq. (20).

The restricted XX model is universal for quantum computation [42]; we restrict the σxυσ
x
η

and σzυσ
z
η terms to have the same weights (i.e. we consider the XX rather than the XY

model) such that the positive phases of the gradient of Eq. (7) do not vanish when training

the σxυσ
x
η terms.

We chose the evolution times for our QBM/thermometer combination uniformly from[√
2
π
, 10
√

2
π

]
; this defines the energy scale for the model parameters. In these units, we

initialized the interaction between QBM and thermometer to be drawn from N (0, 1) (that

is, the normal distribution with mean 0 and variance 1). For all considered models, we drew

Γ from N
(
Γ , 2.5× 10−5

)
, where Γ = 1 for the results in Sec. V B. Furthermore, for both

the RBMs and the QBMs, we initialized the visible biases bυ to:

binit
υ = ln

(
pinit
bυ

1− pinit
bυ

)
, (B1)

where

pinit
bυ =

Ed∼pdata [di] + 1

2
, (B2)

and the initial hidden biases bη were sampled from N (0, 2.5× 10−5). Finally, the initial

weights wij were sampled from N (0, 10−4). The chosen initial values for the biases and

weights were inspired by [53].

For the results described in Sec. V A, we considered the same QBM/thermometer inter-

action strength and thermometer parameters as in our training results, but estimated the

final trained biases and weights for the QBM to be drawn from N (0, 1).
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Model Learning Rate α

Restricted Boltzmann Machine 1.25× 10−3

Exact QBM, Semi-restricted Transverse Ising Model 4× 10−3

Exact QBM, Restricted Transverse Ising Model 2.25× 10−3

Exact QBM, Restricted XX Model 3× 10−3

QBM/Thermometer Combination, Semi-restricted Transverse Ising Model 2× 10−3

QBM/Thermometer Combination, Restricted Transverse Ising Model 2.25× 10−3

QBM/Thermometer Combination, Restricted XX Model 5× 10−4

TABLE II. The various learning rates used in our numerical experiments.

Appendix C: Training Procedure

We trained each model using the Adam algorithm [54], with the hyperparameters β1 =

0.5, β2 = 0.9, and ε = 10−8. We summarize the learning rates α used for all models

in Table II; we used the optimal α for each model found via grid search. We estimated

∂β(θ)
∂θ

as appearing in Eq. (19) by estimating the difference in β in between training steps

and dividing by the estimated ∂θL (θ) between training steps. We trained the restricted

Boltzmann machine using persistent contrastive divergence [55], with a number of persistent

chains equal to the size of a mini-batch with 1 step of Gibbs sampling for both the visible and

the hidden layers [53]. When training our QBM/thermometer combination, we randomly

averaged observables over |T| = 2 quench evolution times drawn from
[√

2
π
, 10
√

2
π

]
in the

units described in Sec. V A and Appendix B. We trained each model with a mini-batch size

of 16 over 40 epochs of 512 data points each. The final empirical KL divergence and AIC was

estimated over 1024 samples for each model. For the results described in Sec. V, we used 1

hidden unit for all models; we saw no significant improvement in training performance with

more hidden units for any model, probably due to the simplicity of the data distributions.

For the results in Sec. V, we considered T1 = Tφ = 75 in the units described in Sec. V A and

Appendix B. Finally, we simulated estimating each observable O through ν = 1000 samples

by adding Gaussian noise with a variance of
〈O2〉−〈O〉2

ν
.
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