
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2018.2888987, IBM Journal of
Research and Development

Potential of quantum computing for drug discovery
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Abstract— Quantum computing has rapidly advanced in re-
cent years due to substantial development in both hardware and
algorithms. These advances are carrying quantum computers
closer to their impending commercial utility. Drug discovery
is a promising area of application which will find a number
of uses for these new machines. As a prominent example,
quantum simulation will enable faster and more accurate
characterizations of molecular systems than existing quantum
chemistry methods. Furthermore, algorithmic developments in
quantum machine learning offer interesting alternatives to
classical machine learning techniques, which may also be useful
for the biochemical efforts involved in early phases of drug
discovery. Meanwhile, quantum hardware is scaling up rapidly
into a regime where an exact simulation is difficult even using
the world’s largest supercomputers. We review how these recent
advances can shift the paradigm with which one thinks about
drug discovery, focusing on both the promises and caveats asso-
ciated with each development. In particular, we highlight how
hybrid quantum-classical approaches to quantum simulation
and quantum machine learning could yield substantial progress
using noisy-intermediate scale quantum devices, while fault-
tolerant, error corrected quantum computers are still in their
development phase.

Drug discovery is the process of developing a drug from
an initial hypothesis to a fully commercialized product. This
process can often take more than a decade and billions of
dollars in expenditure before a molecule can be recognized as
a drug [1]. A significant portion of these resources is invested
in the identification of molecules that exhibit significant
medicinal activity against a disease, usually referred to as
a hit. Most of the research in drug discovery focuses on hits
of low molecular weight (<900 Daltons, with sizes of 1nm
or less [2]), which constitute around 78% of the drug market
[3]. In this case, the medicinal activity of a particular drug
candidate or ligand is associated to its ability to bind to a
biological target, usually a protein, whose activity regulates
the metabolism of the disease. Typically, the first stage in the
discovery process is to generate a library of potential drug
candidates that is subsequently screened based on medicinal
activity to identify hits [4]. Along with the activity, other
factors that determine the efficacy and potency of the hits,
such as the absorption, distribution, metabolism, excretion
and toxicity (ADMET) profile, among other pharmacokinetic
properties, are optimized to produce a smaller set of better
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candidates called lead compounds [5]. Further screening and
optimization generally delivers a small set of leads which
proceed through the stages of drug development and clinical
trials before one of them becomes a viable commercial
product.

Traditionally, the search of hits was accomplished by
high-throughput screening (HTS) on large molecular libraries
using in vitro activity experiments. These searches generally
have low hit rates and required the synthesis of a large
number of compounds, which in turn demanded a signif-
icant investment of resources and time [5]. This approach
was completely transformed by the advent of commercial
computers in the 70s and 80s, which enabled computational
chemistry and statistical analysis, among other tools [6], to
accelerate HTS, improve the hit rate and increase the quality
of the leads obtained in the process [5]. The increase in
computational power and the improvement of computational
chemistry techniques fostered the practice of Computer-
Aided Drug Design (CADD), which constitutes a significant
portion of the drug discovery pipeline today. The ultimate
goal of CADD is to answer the inverse-design question: what
are the best chemical structures associated with a desired
therapeutic effect? [7], [8]. To answer this question accu-
rately, CADD faces two main challenges: (1) the accurate
simulation of the interaction of drug candidates with biolog-
ical targets, and (2) accurate statistical modeling of activities
and ADMET profiles based on the available simulated and
experimental data. The former is largely constrained by the
computational cost of simulating the physics of molecular
systems for both small molecules and biological targets. The
latter is constrained by the effectiveness of existing statistical
techniques.

Quantum computing could potentially shift the paradigm
with which one thinks about quantum chemical simulation.
By efficiently preparing highly entangled states that are
otherwise intractable to describe on classical computers,
quantum computers can perform certain important quantum
chemistry and machine learning tasks in ways that are be-
yond the ability of classical computers. Furthermore, efficient
manipulation of quantum states also allows for certain linear
algebraic operations to be performed far more efficiently
than what is possible with classical devices. With these
unique abilities, quantum computing promises to deliver ef-
ficient and highly accurate solutions to otherwise intractable
problems, for instance finding the ground state energy of
a molecular system [9]. As we will discuss later in detail
later in Section II, a common method for treating electronic
structure calculation on a quantum computer is via second
quantization, where an electronic state over N spin orbitals is
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represented using N qubits - one qubit for each spin orbital.
In the coming years we are anticipating quantum devices
with N > 50 qubits [10], [11], making it possible to map
onto a quantum computer problems whose exact solution
(say via exact Hamiltonian diagonalization) is beyond current
classical computation.

Quantum machine learning is also a rapidly emerging field
exploring how quantum computers can perform machine
learning tasks with improved performance over classical
computers [12]. As we will discuss in Section II-B, there
are plausible reasons to believe that quantum computers may
enable solutions to machine learning tasks that are beyond
classical computation. Pinpointing the precise regimes of
quantum advantage is a main mission of the field of quantum
machine learning.

In this article we review developments in quantum com-
puting relevant to drug discovery through quantum chem-
istry and machine learning, outlining the promises as well
as caveats. The paper is organized as follows: first we
describe the general pipeline of CADD and some of the
methodologies employed in the industry and their challenges.
Second, we outline some of the latest quantum computing
algorithms that we consider relevant for CADD, namely
quantum simulation and quantum machine learning. Finally,
we share our perspective on how these methods could benefit
CADD by addressing some of its biggest challenges.

The purpose of this perspective is to initiate a mutually
beneficial cross-disciplinary discussion and collaboration be-
tween the fields of CADD and quantum computing. For the
quantum computing community such dialogue will help to
outline the practically useful regimes where quantum com-
puters may have an advantage over classical counterparts.
For the drug discovery community our hope is to bring an
alternative perspective on classical computing for solving
some of the crucial computational problems which arise in
practice. Our approach is by no means exhaustive, and for
more in-depth discussion of specific technical subjects, the
reader is encouraged to refer to the relevant citations.

I. OVERVIEW OF COMPUTATIONAL METHODS IN DRUG
DISCOVERY

At the risk of gross simplification, we summarize the
overall drug discovery process as shown in Figure 1a. The
usual drug discovery pipeline requires the identification and
characterization of a suitable biological target, which can be
effectively proved to intervene in the mechanism of disease.
This step often requires intense experimentation as well as
extensive statistical analysis of the collected data. Once a
biological target is in place, the next step is the search for
hits, which usually involves extensive biological and virtual
screening over libraries of molecules, or the generation of
completely new compounds (de novo design), that must be
synthesized and tested. The group of hits collected on this
stage undergoes further optimization of the pharmacokinetics
and ADMET properties, involving a combination of bio-
logical and in silico tests, to generate the final group of
leads. These stages, going from target identification to lead

optimization, benefit the most from CADD techniques [13],
[14]. The subsequent steps in the drug discovery pipeline,
which involve clinical studies in animals and humans prior to
the Federal Drug Administration (FDA) review and approval
are less intensive in the use of CADD tools, but might require
further rounds of lead optimization. The final success of a
drug discovery campaign depends, to a great extent, on the
quality of the CADD approaches applied in the early stages.

CADD approaches employed on the stages of hit search,
lead discovery and lead optimization are generally clas-
sified into two main categories [5]: structured-based and
ligand-based (Figure 1b). Structured-based CADD relies on
knowledge of the target protein 3D structure to predict the
ability of a candidate to bind to the target, whereas ligand-
based CADD employs information of known active and
inactive molecules to predict the activity of new candidates.
Structure-based CADD is preferred over ligand-based if the
structural information of the biological target is available.
This information is usually obtained experimentally using
NMR spectroscopy and X-ray crystallography studies on
crystallized protein [5]. Predicting the protein structure from
the knowledge of the amino-acid sequence requires simulat-
ing the protein folding process, which is so far out of reach
except for small peptides and fast folders [15]; however, in
the absence of experimental structures, it is still possible to
approximate the 3D structure of an unknown target protein
by comparing its sequence with related known proteins, a
process known as comparative modeling [16]. Along with
the structure, it is necessary to characterize the target by
identifying the binding (active) sites, that are responsible for
the biological activity and where the potential drug candidate
(ligand) is expected to bind.

Assuming that a model for the target structure is available,
structured-based CADD approaches attempt to find suitable
drug candidates by analyzing the interaction between the can-
didate (ligand) and the biological target, generally a protein;
therefore, most CADD approaches require: (1) determining
the pose or conformation of the ligand that fits best the
binding site of the target, and (2) assigning a numerical score
that express the strength of the interaction of the ligand-target
complex [17]. The process of finding the best conformation
is generally called docking and the process of computing
the affinity is referred as scoring [5]. These procedures are
generally intertwined since docking requires a score function
that ranks different conformations according to their ability
to form bound ligand-protein complexes. Extensive sampling
of conformations is often required in structured-based CADD
approaches to account for the mobility of protein and ligands
in biological conditions (aqueous solutions at room temper-
ature) [18].

When no information of the 3D tertiary structure of the
protein can be obtained, ligand-based CADD is the main
tool. In this case, the selection of the candidates proceeds
by comparison of the structures with a set of known active
ligands using molecular similarity indexes and by evaluation
of the activity using a quantitative structure-activity relation
(QSAR) model [5]. QSARs are mathematical models that ex-
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press the activity or in general any other property of interest,
as a function of a set of molecular descriptors [19]. Typical
descriptors employed in ligand-based CADD encode a vari-
ety of chemical information, including molecular weight, ge-
ometry, volume, surface areas, ring content, 3D geometrical
information, atom types, electronegativities, polarizabilities,
molecular symmetry, atom distribution, topological charge
indices, functional group composition, aromaticity indices,
solvation properties, among others [5]. Both QSAR models
and structure comparison require experimental information
for the set of molecules employed as either reference for
the comparison or training set for QSAR. Consequently, the
models employed in ligand-based CADD are often restricted
to libraries of candidates that share sufficient similarities with
the set of molecules employed as reference [20].

For the rest of this section, we will describe in more
detail the different stages of CADD along with some of the
structured-based and ligand-based methodologies employed
in each of them, as well as some of their limitations and
challenges. We place a special focus on ab initio methods
since those are methods that are most amenable for adapting
quantum computing techniques.

A. Target identification and characterization

The initial stage of drug discovery concerns collecting
evidence of therapeutic effects in activation or inhibition
of certain biological pathway associated to a disease. The
biological entity responsible for such response is called the
target, which is generally a protein. In a broader sense, the
term could also refer to the genes or RNA associated to
the protein. Ideal targets should be “druggable”, meaning
that the drug candidate should be able to access the target
and effect a biological response that is measurable in vitro
and in vivo. The identification of suitable targets and their
corresponding validation by studies of the mechanism of
action increases the chance of success during the discovery
process and allows one to foresee side effects associated to
the modulation of the target [13].

Traditional approaches to target identification employ
chemical proteomic techniques such as affinity chromatogra-
phy, biochemical fractionation, and radioactive ligand bind-
ing assays [22]. These methods employ a small molecule
with proven activity to isolate the target from a mixture
of other proteins. In the case of affinity chromatography,
the most widely used approach, the active compound is
immobilized in a porous matrix. Subsequently, a solution
containing the protein mixture is passed through the matrix,
and those proteins that bind to the immobilized active com-
pound are retained. In the final stage, the retained proteins,
which correspond to the potential targets, are eluted from the
matrix [23]–[25]. The identification of the protein is usually
performed via isotopic-labeling and mass spectrometry tech-
niques.

More recently, the improvement of sequencing techniques
have enabled the use of genetic screening techniques, where
targets are identified by studying the effect of different
concentrations of an active compound in a population of cells

with different mutations [25], [26]. By identifying which
populations are more susceptible to exposition to an active
compounds and looking at their mutations, it is possible to
infer which proteins are associated to the activity. Another
technique called gene profiling combines gene expression
analysis (e.g. message RNA profiles) with chemical studies
to identify targets. This approach is based on the assumption
that deleting the genes that codify the target protein should
produce the same inhibitory effect of the active compounds.
Consequently, the target can be identified by comparing
the expression profiles (information of which proteins are
synthesized or expressed) of the population of mutants with
the profiles of populations exposed to the active compound
[24]. A similar idea can be applied to identify targets by
examining message RNA/protein levels to determine whether
they correlate with the manifestation of the disease [13].

The development of systems biology has motivated a
more integrative approach to target identification that seeks
to identify target associations and their mechanisms within
complex biological systems using computational models.
Many of these approaches compare available biological data
on regulatory networks, molecular pathways and cell pheno-
types with the same type of profiles for bioactive molecules
and targets in order to find common patterns of biological
response and drug activity [27]. The biological data is
usually available in a variety of sources that include medical
databases, patents, papers and other information available
in the web [13], which has motivated the incorporation
of data mining strategies in target identification [28], and
the use of multiple computational approaches to identify
patterns in the data leading to target recognition [29]. Some
of these approaches include machine learning methods based
on Bayesian inference [30].

Following target identification and validation, the tertiary
structure of the target protein must be characterized in order
to perform structured-based drug discovery. This can be
done using NMR and X-ray crystallography techniques on
a protein crystal, which are generally difficult to obtain due
to the experimental difficulties of purifying and crystallizing
proteins [31]. In the case of targets without known exper-
imental tertiary structures, computational approaches such
as threading, comparative modeling and ab initio methods
can be used to predict 3D structures from the knowledge
of the protein aminoacid sequence. Comparative modeling
is by far the most common approach for 3D structure
prediction. This method generally consists of building the 3D
structures of a protein by comparing its sequence with those
of proteins whose 3D structures have been experimentally
characterized (i.e. 40% similarity). A typical prediction with
comparative modeling implies the identification of related
proteins that can serve as templates from a database of
known structures, usually the Protein Data Bank (PDB) [32].
The sequences of unknown proteins and the templates are
aligned and compared, and the geometries of the regions with
good alignment are copied. Missing regions require further
refinement using relaxation methods based on molecular
dynamics, Monte Carlo minimization, or genetic algorithms
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Fig. 1. (a) General workflow of drug discovery process. Here we focus on the early phase where computationally intensive quantum chemical analyses are
involved. (b) Components of each stage of drug discovery that heavily involve quantum chemistry or machine learning techniques. (c) Quantum techniques
that can be applied to the components listed in (b) and potentially yield an advantage over known classical methods. Here we make the separation between
techniques for noisy intermediate scale quantum (NISQ) devices [21] and fault-tolerant quantum computing devices.

[5]. Threading works with a similar principle, but employs
comparison with shorter sequences obtained from proteins
with less similarity..

In cases where suitable templates are not available for
the target of interest, free modeling approaches are em-
ployed. This term groups knowledge-based approaches for
structure prediction and physically motivated methods [16].
Knowledge-based approaches usually assemble a protein
structure by using the geometries of small protein fragments
extracted from known 3D structures. Purely first principles
prediction has been mainly limited to the use of MD sim-
ulations with appropriate solvent models to optimize the
structure of the protein [16], an approach that is much more
computationally demanding than comparative modeling or
knowledge-based free methods. The advantage of physical
based methods is that they reveal the pathway of protein
folding for the unknown structure, but their main bottlenecks
are their need for extensive conformational sampling and
accurate force-field potentials [33]. In this area, quantum
simulation and quantum optimization approaches could be-
come powerful tools by addressing problems such as protein
folding, as described in Section III.

A crucial aspect of target characterization is the recogni-

tion of binding sites, which are those regions of the protein
where the drug candidate is more likely to bind and effect
the desirable therapeutic effect [17]. Often, binding sites for
small molecules are known for co-crystallized structures of
the target or related proteins [5]; however, if the binding sites
are unknown or if the purpose is to identify new binding sites
for new applications, a few computational programs such as
Ligsite, Qsite finder and CASTp, among others [34], [35]
can be applied. Most of these methods employ geometrical
or atomistic probes to identify places where a small molecule
is more likely to bind based on geometrical constraints or on
empirical energy functions. Binding site identification could
benefit from structured-based techniques such as molecular
docking and affinity calculations [17], although this might
require extensive conformational search over the surface of
the protein, which is computationally more demanding.

B. Hit search

The process of hit search generally involves high-
throughput screening (HTS) of a database of candidate
compounds. Traditionally, this process has required the syn-
thesis and experimental determination of the activity of
the compounds, which is extremely expensive and slow.
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Nowadays, the process is accelerated using virtual HTS
(vHTS). Different score functions are employed to rank the
activity of the candidates depending on whether a structured-
based or ligand-based approach is used. Some ligand-based
approaches score the candidates based on their similarity
with a set of known active compounds. Another option is
QSAR, which constructs a statistical model based on experi-
mental information of the activities and chemical information
of the ligands. In both approaches, the chemical information
is expressed with molecular descriptors that encode physic-
ochemical and structural information of the molecules in a
digital format, suitable for comparison. Molecular descriptors
can be generated by knowledge-based, graph-theoretical,
molecular mechanical or quantum-mechanical methods [36],
[37]. Arguably, the most popular descriptors are molecular
fingerprints, which encode various molecular properties as
predefined bit settings [38], [39]. Other descriptors are com-
puted solely from the 2D or 3D topology of the molecule
based on graph-theoretical methods [40].

Comparison-based approaches usually employ molec-
ular fingerprints to compute similarity indexes between
molecules, which makes them an efficient tool for vHTS;
however, the method suffers from the influence of un-
necessary features and is usually limited to a small set
of molecules. An alternative to comparison-based methods
are QSAR models, which are often applied when a set
of compounds with varying degrees of activities is well
characterized experimentally and this data can be used to
train a model [41]. Consequently, the success of the QSAR
will depend on the quality of the initial data along with
the selections of descriptors and statistical model. A major
drawback is that the applicability of the model is limited to
the sampling space of the initial set of compounds, which
limits the chemical diversity of the drug candidates obtained
in the process. Furthermore, these new candidates are likely
to show only small changes in activity with respect to the
original compound. For the same reason, QSAR can be a
useful tool during the lead optimization phase and is also
applied to the prediction of pharmacokinetics or ADMET
profiles [42]. While QSAR modeling has many success
stories in CADD, its application is generally limited to
families of molecules with similar scaffolds [5].

A fundamental aspect of QSAR is the selection of the
statistical model. Most QSAR applications involve linear
models, such as multivariable linear regression (MLR), prin-
ciple component analysis (PCA) and partial least square
analysis (PLS) [36]. The main advantage of these methods is
their computational efficiency, however, they are insufficient
to describe the often non-linear relation between biological
activity and molecular properties [5]. This fact, along with
the increasing amount of activity data available nowadays,
has motivated the use of non-linear statistical models for
QSAR, most of them employing Artificial Neural Networks
(ANN) and other machine learning techniques such as Sup-
port Vector Machines (SVM), Random Forest (RF) and
Decision Trees (DT) [43]. These approaches have been
successfully employed in the prediction of activities [44] and

ADMET profiles [45]. Although applications of the deep
neural networks to drug design are still exploratory, there
are good indications that they could provide new avenues
for estimating binding affinity prediction, generating de novo
drug candidates and predicting ADMET profiles [46]–[49].

Alternatively, structure-based hit search focuses on pre-
dicting the protein-ligand geometries and estimating the
protein-ligand score functions, which are related with ac-
tivity. Molecular docking is usually performed for several
binding sites on a database of targets. Different docking
approaches employ either atomic, surface or grid-based rep-
resentation of the ligand and target structures [50]. Surface
methods describe structures as networks of surfaces with
different shapes that mimics the Van Der Waals mappings
of the atoms [51]. In this case, docking is performed by
aligning the corresponding structures. Grid-based methods
simplify the 3D information of the molecule by creating grids
to quantify the overlap between the target and the ligand
structure. Finally, atomistic models generally rely on force-
field simplification of the atomic interactions. The parameters
of these force-fields are usually optimized to match quan-
tum mechanical calculations on small molecules, therefore,
they are more accurate than grid or surface models. Most
molecular docking methods today employ flexible atomistic
models, which consider ligand and protein flexibility during
the docking process [5]. There are different strategies for
sampling the conformations of the ligands and target during
docking including systematic enumeration of the confirma-
tions, molecular dynamic simulations, Monte Carlo search
algorithms with Metropolis criterion (MCM) and genetic
algorithms to find the optimal ligand-protein complexes [5].

Current approaches to generate candidate structures
in ligand-based CADD and to sample conformations in
structured-based CADD are very efficient and do not con-
stitute a limitation for vHTS. In contrast, the accuracy and
efficiency of vHTS is mainly limited by the quality and
efficiency of the scoring functions employed in the process
[20]. Ideally, scoring functions should be directly related to
the binding affinity of the candidate with the target, which
is defined as the free energy of the formation of the ligand-
target complex from the separate ligand and target molecules.
Most scoring functions are derived from statistical models
of experimentally characterized ligand-protein complexes or
by a physical description of the interactions. The former
are further classified into empirical functions, where the
model employs molecular descriptors and knowledge-based
functions, where the model employs structural information
such as atom-atom distances [5], [52]. Other types of scoring
functions are based on molecular-mechanics (MM) calcu-
lations (MM-based) that employ force fields parameterized
using quantum mechanical calculations or directly from
experimental information [53]. Finally, consensus-scoring
functions, which are combinations of the previous types,
have recently gained popularity, exhibiting better results in
some cases [54]. Despite their computational efficiency and
extensive usage, existing scoring functions are far from being
infallible and often render false positives during the screening
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process [20].
The main advantage of MM-based scoring functions is

their wider range of applicability, compared to empirical and
knowledge-based scoring functions that can be only used
for reduced molecular spaces for which experimental data is
available; however, the accuracy of MM scoring functions is
limited by the difficulty of including polarization and charge
transfer effects into force fields [52], [55]–[58]. These effects
typically appear in binding of small molecules to enzymes
and metalloproteins, or when binding proceeds through a
chemical reaction, such as proton transfer [59]. A quantum-
mechanical description of the binding process naturally in-
corporates these effects, therefore, they can overcome these
limitations. Unfortunately, a full ab initio simulation of the
ligand-target complex is definitely beyond the capabilities
of existing classical computers [52]. Furthermore, docking
and screening require extensive sampling and evaluation of
the score function, which would in turn require a significant
number of ab initio calculations. These computational limi-
tations have discouraged CADD practitioners to incorporate
QM calculations in vHTS screening [59].

Despite the computational burden of QM calculation for
CADD, different schemes have been devised to balance
the accuracy requirements with the computation cost in the
estimation of binding affinities. This task has been tackled
mostly with Quantum Mechanics / Molecular Mechanics
(QM/MM) approaches. In this case, the system is sepa-
rated in two regions, one treated with a standard quantum
chemistry approach (The QM region) and another region
treated with MM. This approach is ideally complemented
with a description of the solvent, either implicit, explicit
or a combination of both [52]. The incorporation of these
approaches to vHTS has been attempted via QM-based
scoring functions that incorporate QM calculations for some
parts of the system [60], as well as through simplified
models of the binding [61]; however, these strategies have
not been adopted by the CADD community mainly because
of its larger computational cost and limited accuracy, the
latter being influenced by the choice of methods and basis
sets employed. As a result, the use of QM/MM approaches
have been mostly prescribed to the lead optimization phase,
where the set of molecules under study is significantly
smaller. In the next section we describe in more detail the
different approaches for the calculation of binding energies
that incorporate QM calculations.

An alternative approach to vHTS for hit search is de
novo design of ligands [62], [63]. These methods apply a
strategy to build a completely new compound that can bind
to the protein, generally by ligand growing or ligand linking
methods. In the first approach, a known ligand is docked
onto the binding pocket and additional groups are added
or replaced on the initial structure to improve binding. In
the second approach, a group of ligands is simultaneously
docked onto the binding site and subsequently linked to
generate a candidate. In both cases, a good scoring function
coming from an ab initio simulation could improve the
accuracy of the design; however, the biggest challenge for

the de novo drug design is the assessment of synthesizability
[5]: since the structures obtained in this process are new
and do not appear in databases of synthesized compounds,
it is important to establish a priori if it is worth devoting a
significant amount of resources and expertise in synthesizing
them. Current computational approaches to synthesizability
employ automatic retrosynthetic studies [5]. Some of these
tools could benefit from better QM approaches for simulating
reaction paths and predicting the kinetics of chemical reac-
tions, a space where quantum computers promise significant
advances [64]. Similarly, state of the art machine learning
techniques, such as generative adversarial networks [65],
are offering new paths towards de novo design of small
molecules [66], [67].

C. Lead discovery and optimization

Once hit compounds have been identified, they enter
an optimization phase to produce a smaller set of better
candidates, called leads. The set of leads undergoes fur-
ther optimization in a process that iterates between CADD
development and in vitro and animal experiments [5]. The
purpose of this second phase of screening is to optimize
the drug-like properties of the hit compounds, which in-
cludes not only the biological activity, but also the ADMET
profile and other pharmacokinetic properties. The general
assumption behind this process is that small changes on the
chemical structure will produce incremental changes of the
drug-like properties; therefore, the optimization involves the
synthesis of the drug-candidates along with testing of their
biological activities accompanied by CADD. In this stage,
QSAR models for smaller datasets play a major role in the
optimization, allowing for quickly judging whether certain
modifications improve drug-likeness or not, especially when
no target information is available.

On the other hand, structure-based approaches focus on
estimating the binding affinity of the the candidate molecules,
whose accurate and efficient calculation is considered the
ultimate goal of CADD [59]. The binding affinity estimation
needs to be very accurate because a difference of 6kJ/mol in
this quantity translates to a change of one order of magnitude
in the binding equilibrium constant, which finally determines
the relative concentrations of the free-target and inhibited tar-
get. Unfortunately, most of the established methodologies for
computing binding affinities are based on MM approxima-
tions that lack the description of polarization, charge transfer,
and other quantum mechanical effects, among other phenom-
ena crucial to achieve such accuracy. These limitations call
for the use of quantum mechanical (QM) approaches, that
naturally incorporate such effects. In practice, however, the
use of QM calculations in drug discovery is not widespread
due to the approximations that need to be employed to avoid
the inherent computational cost of exact QM simulations
on classical computers. Approximate QM methodologies can
introduce errors that are even larger than those obtained with
MM methods depending on the level of theory chosen and
are usually restricted to only a small part of the ligand-protein
complex due to computational limitations; consequently, the
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development of efficient algorithms for accurately simulating
quantum systems can have a significant impact on CADD.

Current CADD methods to compute binding affinities
using QM methods can be classified as single-structure
approaches, end-point approaches or full free-energy estima-
tions [52]. In single-structured approaches, the energies are
computed for a fixed ligand-target complex, with a structure
obtained from experimental data or from a geometry opti-
mization with MM. This approach avoids sampling multiple
conformations with a QM energy function, but is very
inaccurate due to the differences between the potential energy
functions obtained with MM and QM approaches. This
methodology can render errors of even 80 kJ/mol, even after
relaxation of the geometries using the QM calculation. Most
of the studies using a single-structure methodology have
employed QM/MM and fragmentation approaches, where the
QM part is treated by semiempirical methods (SE), density
functional theory (DFT), or Hartree-Fock calculations with
small basis sets. The accuracy observed in many applications
can vary widely depending on the particular choice of
QM method [52]. Fragmentation methods such as pairwise-
additive (PA) fragmentation and molecular fragmentation
with conjugate caps (MFCC) [68] and fragment molecular
orbital (FMO) [69] have been employed in full calculations
of the protein-ligand complex, with modest results. In all
these methods, the total energy is approximated as a sum of
the energy of individual fragments plus a correction term,
which substantially the reduce the cost of the calculation.
More recently, linear scaling methods have shown promise
of increasing the accuracy, but are still far from end-point and
full free-energy methodologies with force fields [52]. As a
result, single-structure QM calculations have been employed
mainly as a way to rationalize experimental binding affinities,
rather than as a method for direct prediction.

In end-point approaches, the binding affinities are esti-
mated as an average over several sampled structures, how-
ever, the expressions employed in the free energy calculation
are empirical functions based on force field and empirical
corrections to incorporate solvation effects. These methods
have been upgraded by replacing the purely MM simula-
tion with a QM/MM approach [52], [70]. To mitigate the
computational cost of the application of QM/MM in drug
discovery, the QM region is generally restricted to the ligand
and occasionally some of the relevant residues in the binding
pocket [52]. The QM approximations used in end-point
approaches have been restricted to semi-empirical methods,
density functional theory, or Hartree-Fock calculations.

The strict thermodynamic calculation of the binding free
energies is much more challenging since it requires a free-
energy simulation (FES) with extensive sampling of each
of the intermediate molecular structures in the formation
of the the receptor-ligand complex. In principle, the FES
must describe the transition between the separate ligand
and receptor structures to the receptor-ligand complex, but
a more common approach is to compute relative binding
energies by studying the transition between receptor-ligand
complexes with different ligands. One strategy employed to

avoid computing the QM/MM energy of all the sampled
structures is to perform the entire calculation using MM and
then to estimate a QM/MM correction using an average of the
difference between the QM/MM and MM calculation for a
few geometry configurations [71]–[73]. Another approach is
the free energy perturbation (FEP) technique, where the first
ligand is mutated by small structural changes into a second
ligand to mimic the thermodynamic ligand-interconversion
cycle, with averages taken over many samples [74]. While
most of the FEP calculations are attempted with regular
force fields, better accuracies could be achieved employing
QM/MM techniques combined with implicit and explicit
solvation models.

By far, FES approaches have proven to be the most
accurate when applied in combination with QM methods of
relatively high accuracy and sufficient sampling [52]. Bench-
mark calculations that compare the results of typical choices
of QM methods such as DFT and semiempirical approaches
have shown a clear improvement going from semiempirical,
via DFT, to wavefunction based methods such as CCSD(T)
[52]. Clearly, the major obstacle for approaches that combine
FES and QM calculation for CADD is the daunting task of
performing wavefunction calculations for all the structures
sampled in FES. Moreover, properly accounting for solvation
effects requires the combination of both explicit and implicit
solvation techniques, which adds more complexity to the al-
ready challenging simulation of the receptor-ligand complex.
In this scenario, the development of quantum algorithms that
can tackle quantum simulation efficiently and accurately can
contribute to extending the applicability of FES strategies
to drug discovery, as quantum computers achieve size and
precision that enables the simulation of large molecules.

II. QUANTUM COMPUTING

Most digital devices use bits as the building blocks for
information processing. Each bit expresses a discrete, “clas-
sical” state of 0 or 1. Devices that perform computation
by manipulating bits are referred to as classical computers.
Quantum computers manipulate quantum states of matter for
performing computation. A standard choice for constructing
those quantum states is to combine two-level quantum sys-
tems called qubits. By manipulating the qubit states and tak-
ing advantage of uniquely quantum mechanical phenomena
such as superposition and entanglement, quantum computers
can perform computational tasks in ways that are beyond
what is possible on their classical counterparts. A predefined
way of manipulating quantum states to solve a computational
problem is referred to as a quantum algorithm. In many
cases, by analyzing the number of steps that quantum al-
gorithms take it can be proved that they outperform classical
algorithms for specific problems with reduced number of
steps required. This capability is known as quantum speedup.
Well-known examples of quantum speedup include Shor’s
algorithm for factorization, Grover search, and simulating
quantum systems.

On the experimental side, a wide variety of physical
systems have been explored as candidates for quantum com-
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puters. Some of the hardware platforms, such as ion traps and
superconducting qubits, have been scaling up rather rapidly
in recent years towards the threshold regime beyond which it
becomes intractable to simulate these physical systems with
a classical computer. Recent results in both theory [75] and
experiments [76] have pointed to how the so called noisy
intermediate-scale quantum (NISQ) devices1 [21] with mod-
erate numbers of qubits can in principle produce quantum
states whose measurement outcomes follow distributions that
are justifiably hard to sample from on a classical computer.

Although quantum devices have scaled up rapidly in the
past years, we must stress that the current quantum devices
are still susceptible to noise and error due to environment
interactions. This is the major obstacle that needs to be
overcome along the path to scalable, fault-tolerant quan-
tum computing (FTQC) devices. The good news is that a
comprehensive and rigorous theory of quantum error correc-
tion has been developed over the past two decades which
paves a plausible path to fault-tolerance. On the other hand,
implementing most of the error correcting codes on NISQ
hardware would incur a cost too prohibitive for the device to
do anything useful other than error correction itself, leaving
scalability and fault-tolerance a much longer term prospect
than what is technologically feasible in the near future.

The presence of noise and error does pose significant
challenges for quantum computing, however, it does not a
priori exclude the possibility of achieving beyond-classical
performance using NISQ devices. Noise rates and gate
errors on NISQ machines have undergone a steady streak
of improvement over the years. In addition, new ideas
especially suited for taking advantage of NISQ devices
[21] have provided interesting possibilities. The recently
emerging paradigm of hybrid quantum-classical computation
using variational quantum circuits has received wide interest
[77]. In this paradigm, quantum computers are used as co-
processors in tandem with classical computers for accom-
plishing simulation tasks (See Figure 2). One of the main
appeals of this paradigm is that it combines the advantages
of both quantum and classical computers. The quantum com-
puter handles only the state preparation and measurement
while the classical computer is tasked with optimizing the
parameters with which the quantum computer uses for the
state preparation.

In this section we focus on two large (and rapidly expand-
ing) categories of quantum algorithms which are relevant to
drug discovery, namely quantum algorithms for simulating
molecular electronic structure in computational chemistry,
and quantum-enhanced machine learning.

1NISQ devices are quantum computers that implement logical operations
using physical qubits and, therefore, they have limited gate depth. Current
NISQ computers are projected to have in the order of tens to hundreds
of qubits and being able to execute circuits with depths in the order of
thousands of two-qubit gates. While NISQ devices will not be able to
implement error-correction, they are still expected to provide computational
advantages over classical supercomputers for certain problems.

Fig. 2. Schematic diagrams of two quantum computing paradigms. (a)
Standard gate model quantum computing. In the circuit diagram each hori-
zontal wire represents a qubit and time flows from left to right. The quantum
computation starts from some initial input state and the quantum computer
applies a sequence of operations (called quantum gates) to generate a final
state where each qubit is measured. The sequence of quantum gates is called
a quantum circuit. (b) Variational quantum computation. Here the quantum
circuit contains gates which have variable parameters (illustrated as x and
y in the diagram). Each time the quantum circuit terminates, the classical
computer gleans the measurement outcome and proposes new values of the
parameters for the quantum circuit.

A. Quantum chemistry on quantum computers

Early results in the study of quantum algorithms have led
to proposed quantum speedups for specific computational
problems. Among these, simulation of quantum systems [9],
[78]–[80] has been widely recognized as a canonical appli-
cation for quantum computing. The quantum chemistry com-
munity has long observed that quantum mechanics is hard to
simulate exactly on a classical computer [81]. The computa-
tional cost of exactly treating many-electron problems grows
exponentially as the number of electrons increases. Feynman
suggested the idea [78], [79], later formalized by Lloyd
[80], that computers which obey quantum mechanics can
efficiently simulating quantum systems. Broadly speaking,
quantum simulation problems can be divided into static
and dynamic problems. The former concerns computing
the eigenvalues of the Hamiltonian and the latter concerns
the time evolution of the wavefunction under a quantum
Hamiltonian. Both tasks are difficult on a classical computer
because the dimension of the quantum state space grows
exponentially with respect to the size of the physical system.
Unlike classical bits, n qubits can be in a superposition of
2n states2. These n qubits may be in a highly entangled

2For example, three classical bits can only be in one of the eight possible
states namely 000, 001, 010, · · ·, 111. However, three qubits can be in a
state which is a superposition of all eight states: a000|000〉+a001|001〉+
· · ·+ a111|111〉, corresponding to a unit vector (a000, a001, · · · , a111) of
23 = 8 dimensions.
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state which can be efficiently generated and manipulated
on a quantum computer but hard to treat on a classical
computer. In the classical case, despite clever ideas for
approximation [82], [83], in worst case scenarios one still
needs to keep track of all of the 2n amplitudes, which quickly
becomes prohibitively expensive. For n > 50 storing the
wavefunction of the qubits already requires some of the
largest supercomputers in the world [84]–[86]. In contrast, by
operating on the qubits in specific ways, quantum computers
can efficiently simulate the dynamics of many quantum
systems [80], and such ability also translates to the ability
to efficiently obtain energy eigenvalues exactly [87], [88].

The unique features of quantum simulation have deep
consequences for quantum chemistry. When doing quantum
chemical calculations on classical computers, one would
almost strictly avoid maintaining the explicit wavefunction
of the physical system or propagating the full wavefunction
unitarily under some quantum Hamiltonian due to the pro-
hibitive costs of either method, while on a quantum computer
state preparation and time evolution can often be done
efficiently [80]. This distinction makes for rather different
design patterns in quantum algorithms versus their classical
counterparts. Building on previous results for quantum sim-
ulation [80], [87], [88], it was shown that using the ability to
generate quantum states with sufficiently large overlap with
the ground state and the ability to efficiently time evolve
a state under a molecular Hamiltonian, one could obtain
the ground state energy of the molecular Hamiltonian with
accuracy comparable to full configuration interaction (FCI)
(corresponding to exact diagonalization) [9]. While FCI
suffers from exponential growth in computational cost, the
cost of the quantum algorithm in [9] only scales polynomially
with respect to the system size - an exponential improvement
over classical algorithms.

Since the first introduction of quantum computing to
quantum chemical applications [9], there has been substantial
activity exploring quantum chemistry simulation in a variety
of settings [89]–[93]. On the experimental side, simple
demonstrations of quantum chemistry calculations for a
diverse set of physical systems have been realized [94]–[98].
On the theoretical and numerical side, an extensive line of
research has succeeded in reducing the resources required for
quantum chemical simulations on a quantum computer [99]–
[105]. Researchers have sought to map quantum simulation
algorithms into concrete circuits and estimate the numbers
of qubits and gates required for typical quantum chemistry
calculations [64], [100]–[102]. There are also improvements
to these quantum algorithms which are motivated by insights
from quantum chemistry [103]–[105].

The quantum algorithms discussed so far assume that
scalable, fault-tolerant quantum computers are available. This
is a rather long-term prospect due to the extensive overhead
required by quantum error correction [106], [107]. However,
in the past few years, a hybrid quantum-classical scheme
refered to as the variational quantum eigensolver (VQE)
[77], [108] has received much attention due to its prospects
for being deployed on impending NISQ devices. Unlike

algorithms requiring long coherence time which is only
possible on a fault-tolerant quantum computer, the basic
idea of VQE is to use the quantum computer for a short
state preparation step and use a classical computer to control
the parameters with which the quantum computer prepares
the state (Figure 2b). The measurement results coming from
the quantum computer are often otherwise hard to compute
on a classical computer. As a heuristic quantum algorithm
for finding the ground state energy of a Hamiltonian, VQE
operates by tuning the parameters of the quantum circuit
to minimize the energy expectation of the output state with
respect to the Hamiltonian. In recent years there have been a
number of VQE experiments [98], [108]–[112] performed on
a variety of physical platforms, some of which have already
delivered results of chemical accuracy within a given one
particle basis set for small systems such as berylium hydride.

An important aspect of quantum computing on NISQ
devices is the incorporation of error mitigation techniques.
Without error correction, the incoherent errors accumulated
during the execution of the circuits translate into inaccurate
expectation values measured for NISQ algorithms such as
VQE. Recent proposals have focused on methods to esti-
mate such errors and remove them from the final outcome
of NISQ calculations. Unlike error-correction techniques,
which are general techniques to indefinitely extend the
coherence time of the quantum computer, error mitigation
focuses specifically on compensating errors in expectation
values and therefore do not require a large overhead on
quantum resources. Most of the proposals have focused
on methodologies to enhance the accuracy of expectation
values by extrapolating from results with varying degrees of
noise [113]–[115]. Another proposal suggests the possibility
of estimating first order noise contributions to expectation
values from calculations where only one qubit in the register
is error-corrected [116]. More work is required to implement
these proposals in combination with algorithms such as VQE,
which will be crucial for achieving useful computation on
NISQ devices.

One caveat with respect to VQE schemes, as well as
variational quantum algorithms in general, is that training
the quantum circuit from a random set of initial parameter
guesses may lead to vanishingly small local gradient, making
the optimization task challenging as the number of qubits
grows [117]. This calls for good initial parameter guesses
that are already somewhat “close” to the optimal solution.
Fortunately for quantum chemical problems there are well
motivated ansatz constructions that can serve as excellent
initial starting points. In fact, the basic idea underlying some
of the recent VQE proposals [108], [118] is to start from
some initial approximation of the wavefunction that can
be efficiently computed classically (Hartree-Fock [108] or
fermionic Gaussian state [119]), prepare a quantum state on a
quantum computer which represents such initial approxima-
tion, and variationally optimize the quantum circuit applied
to the initial quantum state to yield a more refined quantum
state that is otherwise intractable to realize classically (uni-
tary coupled cluster [108] or fermionic non-Gaussian state
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[119]). Such refinement can in principle provide results that
are superior to what is feasible on a classical computer, as
it corresponds to exploring a set of states for which there is
not known efficient representation on a classical computer.

B. Quantum machine learning

In recent years there has been a rapidly expanding area of
research seeking quantum techniques for enhancing machine
learning methods. Although the full extent to which quantum
computers can provide advantages on machine learning is far
from known, there are a few heuristic arguments to support
the belief that such advantages may exist:

1) Quantum computers can generate quantum states
which give rise to probability distributions that are
justifiably hard to sample from classically [75], [76].
Because of this ability to generate statistical patterns
that are hard to generate classically, one hopes that
quantum computers may also be able to recognize
patterns in data that are hard to recognize classically
[12].

2) For a physical system of n qubits, the space in which
the quantum state of the n-qubit system dwells has
dimension 2n. Such exponential size may allow for
an exponentially more compact encoding of classical
information. For instance a quantum state of merely
30 qubits can represents a unit vector of length 230 =
1, 073, 741, 824. In some cases, processing the 30-
qubit state for machine learning purposes may be more
advantageous than treating a vector of more than a
billion entries on classical hardwares.

3) Many (classical) machine learning algorithms involve
a large amount of linear algebraic operations, while
quantum computers are known to provide speedups in
problems related to some of the most elementary linear
algebraic operations such as Fourier transforms [120,
Ch. 5], vector inner products [121], matrix eigenvalues
and eigenvectors [87], and solving linear systems of
equations [122]. The quantum techniques therein can
be used as a toolkit for building quantum machine
algorithms.

The above intuitions underpin many of the existing quan-
tum algorithms for machine learning tasks. Here we con-
sider both supervised and unsupervised learning, which are
common tools used in the early drug discovery processes.
We also consider quantum machine learning techniques
on both noisy intermediate scale quantum (NISQ) devices,
and fault tolerant quantum computing (FTQC) devices. In
the following discussions we highlight some representative
results in each category and collect a more comprehensive
list in Table I.

Supervised learning on NISQ devices. Some proposals in
this category focus on taking advantage of the exponential
size of the quantum state space (as alluded to in Argument
2 listed above) by encoding classical data into quantum
states whose sizes scale logarithmically as the dimension of
each data point [124], [125], [127]. It is further highlighted

that one could train a quantum circuit with exponentially
fewer parameters than what is possible with classical neu-
ral networks for classification tasks [124]. A small-scale
demonstration of quantum classification has been realized
recently on a quantum computer by IBM Corp. [125] for
synthetic data. Similar ideas have also been implemented by
Rigetti Computing, Inc. [128] using image recognition as
an example, as well as by Xanadu Quantum Technologies,
Inc. on a continuous variable quantum system [129]. In
addition to using quantum circuits directly as classifiers,
it has also been proposed to use a quantum computer to
estimate hard-to-evaluate kernel functions for support vector
machines [125], [126].

Supervised learning on FTQC devices. There are a variety
of proposals in this category which take advantage of the
linear algebraic routines developed in the quantum algorithm
literature. Using techniques derived from Grover search, one
can yield quantum speedup in training perceptrons [148] and
restricted Boltzmann machines [142] on an FTQC devices. A
similar speedup has also been shown for Bayesian inference
[150].

The quantum algorithm for solving linear systems [122]
opened up a new avenue from which quantum speedup may
be obtained. For example, there are quantum algorithms for
least-squares regression [144] and support vector machines
[146] which may yield an exponential quantum speedup in
certain settings.

Unsupervised learning on NISQ devices. There are al-
gorithms in this category based on both gate model and
quantum annealing devices. In the gate model, quantum
autoencoder models [130], [131] have been proposed for
learning compression of quantum data, which can be helpful
for reducing the dimension of parameter space in variational
quantum algorithms. Drawing on the connection to MAX-
CUT, a clustering algorithm has been implemented [140]
on a superconducting quantum device produced by Rigetti
Computing, Inc. Another proposal for unsupervised quantum
machine learning which is analogous to a Boltzmann ma-
chine uses the inherent property of sampling from a quantum
circuit [157], and it has been demonstrated [138] on an ion
trap quantum computer produced by IonQ, Inc.

Quantum annealing devices are also useful for unsuper-
vised learning because they enable efficient approximate
sampling from the thermal distributions of transverse Ising
systems. The power of being able to approximately perform
such sampling can be appreciated by observing that in
the special case where the transverse field is absent, the
sampling task is equivalent to a general Boltzmann machine
in the classical setting, which is challenging in the classical
case. Quantum annealers as samplers have been applied
in generative models such as Helmholtz machines [136],
variational autoencoders [133], and learning probabilistic
graphical models [139] using processors produced by D-
Wave Systems, Inc.
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Supervised Unsupervised
NISQ Variational quantum circuit classifier [123]–[129] Quantum autoencoder [130]–[132]

Kernel-based quantum-classical classifier [125], [126] Hybrid quantum-classical variational autoencoder [133]
Quantum Boltzmann machine [134], [135] Hybrid quantum-classical Helmholtz machine [136]

Quantum training of classical Boltzmann machine [137] Quantum circuit-based generative modeling [138]
Learning probabilistic graphical models [139]

Quantum generative adversarial networks [118]
Hybrid quantum-classical clustering [140]
Quantum Boltzmann machine [134], [135]

Quantum training of classical Boltzmann machine [137]
FTQC Quantum-enhanced classical Boltzmann machine [141] Quantum k-means clustering [142]

Quantum nearest-neighbor classification [142] Quantum principal component analysis [143]
Quantum least-squares regression [144] Quantum generative adversarial networks [145]
Quantum support vector machine [146] Quantum Hopfield network [147]

Quantum perceptron models [148], [149] Quantum-enhanced classical Boltzmann machine [141]
Quantum Bayesian inference [150]

Quantum-enhanced Bayesian deep learning [151]

TABLE I
Examples of techniques for using quantum computers for machine learning tasks. Here we broadly divide the algorithms into four groups. NISQ is short

for Noisy Intermediate Scale Quantum devices [21], which are devices that are available currently or in the near term. FTQC refers to Fault Tolerant
Quantum Computer, which are scalable, error-corrected devices that may be realized in more distant future. The algorithms listed in the former

compartment have either been demonstrated on a physical device, or are designed with explicit consideration for deployment in NISQ devices. Although
the algorithms listed in the FTQC category are not necessarily designed with NISQ devices in mind, they do deliver provable, asymptotic quantum
advantage when scalable fault-tolerant quantum computers are available. However, we note that such claims of quantum advantage are not without

caveats [12], [152], [153] especially in light of recent works [154]–[156] showing classical algorithms with comparable performance.

Unsupervised learning on FTQC devices. Many unsuper-
vised learning tasks require computation of distance mea-
sures and estimating matrix eigenvalues. Indeed, there are
quantum algorithms in this category which take advantage
of the ability of quantum computers to efficiently perform
linear algebraic operations. For example, on a fault-tolerant
quantum computer one has access to quantum algorithms that
allow for quadratic speedup in computing the inner product
between two vectors compared with classical brute-force
methods, which translates to quantum algorithm for k-means
clustering that is faster than classical algorithms in certain
regimes [142]. The ability to represent classical information
in an exponentially compact way (Argument 2 in previous
discussion) combined with the ability to efficiently analyze
the spectrum of a matrix on a quantum computer (Argument
3) leads to a method for performing principal component
analysis [143] in a way that is exponentially faster than
classical computers in certain cases.

In summary, the use of quantum techniques for machine
learning is an emerging field consisting of a diverse set of
ideas. A few promising methods have been proposed recently
which can be implemented on NISQ devices. However,
much more utility would be unlocked if fully-error-corrected
quantum computers become a reality (Table I). Of course,
there are also challenges and caveats associated with what
these quantum machine learning algorithms can achieve.
For quantum machine learning algorithms building on the
HHL algorithm [122] for linear systems of equations or
similar ideas, caveats have been discussed in the literature
[12], [152]. These raise the important questions of how to
load classical data onto a quantum state (the input problem)

and what meaningful results one could extract efficiently
from the output quantum state (the output problem). Perhaps
the most noteworthy caveat comes from a series of recent
papers [154]–[156] which have developed a set of classical
algorithms that deliver asymptotic performance comparable
to the respective quantum algorithms [143], [158]. These
advances demonstrate the subtleties associated with claims of
quantum advantage in machine learning, but also how clas-
sical machine learning can benefit from quantum computing
as a field.

Because NISQ devices mitigate error to a rather limited
extent compared with the fault-tolerant quantum computers
envisioned with the current theories, one major issue with
quantum machine learning on NISQ devices is robustness to
error and noise. Another challenge is the limited number
of qubits that are available compared with the sizes and
dimensions of real-world data sets where classical machine
learning techniques struggle. For quantum annealers both
challenges are discussed in detail by Perdomo-Ortiz et al.
[153], where main issues include limited connectivity be-
tween the physical qubits, intrinsic noise and bias in device
parameters, and deviation of the output distribution from the
true Boltzmann distribution; nevertheless, empirical evidence
shows that the annealing devices can still generate gradients
for tuning the training parameters in the right direction
[136]. In the gate model, gate error is a major concern.
Nonetheless there is also evidence that variational quantum
circuits can learn in the presence of error [137]. Recent
years have witnessed the steady improvement of quantum
hardware, bringing more qubits that are less error prone,
combined with the development of hybrid quantum-classical
techniques that reduce high dimensional real-world data to
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lower dimensional latent space where samples from quantum
devices are drawn [133], [136], [153]. These advances war-
rant cautious optimism for NISQ devices, in the near future,
finding application to real-world machine learning tasks with
competitive performances compared with existing classical
techniques.

III. OPPORTUNITIES FOR QUANTUM COMPUTING IN
DRUG DISCOVERY

The potential to efficiently deliver quantum chemical
calculations with accuracy comparable to FCI methods and
find solutions to optimization problems can impact several
of the areas of CADD describe above. Here we outline a few
potential use cases for quantum computing (Figure 1c).

In structure-based drug discovery (Figure 1b), an im-
portant part of the input concerns the structure of the
target protein. Some progress has been made in the past
decade on quantum techniques for protein folding based on
the aminoacid sequence. In particular, the quantum com-
puting community has considered two simple models: the
Hydrophobic-Polar (HP) model and Miyazawa-Jernigan (MJ)
model, both of which model the protein as a self-avoided
walk on a lattice. Solutions in both quantum annealers [159]–
[162] and gate-model [163] quantum devices3 have been
explored. Current capability of these methods are limited
to proof-of-concept examples such as Chignolin and Trp-
Cage, small peptides with less than 21 aminoacid residues.
Significant venture capital has been invested in quantum
computing for life sciences4 and future work will further
unveil the magnitude of quantum advantage for larger protein
folding problems as quantum devices scale up.

For molecular docking, one of the prevalent methods
is atomistic modeling, which relies on force-field simpli-
fications whose parameters need to match with quantum
mechanical calculations. With the advent of variational quan-
tum eigensolvers (VQE) and the quantum phase estimation
algorithm (PEA), the size of physical systems that can be
treated with accurate ab initio quantum calculations will
be greatly expanded as quantum devices scale up. This
allows for force field constructions based on exact quantum
calculations for molecular fragments that are larger than what
can be handled using existing quantum chemical methods.

In de novo design one of the pressing issues is synthe-
sizability of a drug candidate, which involves simulation
of different reaction paths. Quantum computers offer an
avenue to potentially tackle electronic structure problems in
the strongly correlated regime using, which would allow to
simulate transition states and thermodynamic properties to
accuracies comparable to FCI methods. As a result, this can
improve the effectiveness of de novo design.

One of the bottlenecks for vHTS is the efficiency and
accuracy with which one can calculate the scoring function
(Section I-B). Ideally, the scoring function should be directly

3There are NISQ devices in both quantum annealing and gate model
architecture. For FTQC, there are constructions for gate model while for
quantum annealing it is presently unclear.

4See for example ProteinQure, Inc. https://www.proteinqure.com/

based on binding affinity, which comes from ab initio
quantum mechanical calculations, while in practice empirical
approximations are used. Hence with the quantum subroutine
boosted by quantum computers, one may evaluate the scoring
functions more efficiently and accurately. This could be
achieved using methods where different parts of the system
are computed with different levels of approximations, such as
QM/MM [164]. The ability of computing binding affinities
will also have a major impact on the lead optimization phase
of drug discovery and mechanism of action studies, where
understanding and quantitatively predicting the interaction
of a drug candidate with multiple biological targets provides
clues into toxicity, pharmacokinetics and multitarget action.

For ligand-based drug discovery, QSAR models have, in
many cases, incorporated quantum mechanical properties
[165], [166]. Generally, the quality and accuracy of these
properties significantly affect the quality and predictivity
of the model. Most of these approaches use descriptors
derived from density-functional theory (DFT) calculations,
and quantum computation could serve as a more efficient
and accurate alternative for those calculations.

Another major aspect of QSAR is statistical and machine
learning models. For example in virtual screening a common
technique for classification in chemical space is by using
kernels which map molecular structures to high dimensional
features (see for example the “graph kernel” that has been
used in cheminformatics literature [167], [168]). Commonly
evaluating the kernel function requires handling vectors of
extremely high dimensions, making computational efficiency
a major issue for deploying kernel based classification meth-
ods [169]. In chemoinformatics, kernels accounting for the
similarity between molecules are usually calculated from
fingerprints or descriptor vectors using either some standard
functions (linear, polynomial, Gaussian) or other popular
similarity measures such as Euclidean distance or Tani-
moto coefficient [170]. Positive-definite kernels for complex
systems (e.g. protein-ligand complexes) can be constructed
using a set of simple rules, as practiced in a subfield called
kernel engineering). Since its inception, the kernel-based
support vector machine (SVM) approach has become one
of the most popular methods for building classification and
regression structure-activity models [171], [172]. This is an
area where quantum machine learning can enter with new
possibilities for kernel designs. As mentioned in Section
II-B, there are proposals for quantum enhanced support
vector machines with kernel functions that are otherwise hard
to evaluate on classical computers [125], [126]. The basic
intuitions underlying the potential of having such kernel
functions evaluated by quantum computers include the expo-
nential size of the Hilbert space that a quantum state affords
(see Argument 1 in Section II-B), as well as the ability to
evaluate vector inner products efficiently (Argument 3). The
precise regimes in which quantum algorithms may have an
advantage over existing kernels, however, remains an open
question of great value for future developments.

Most quantum simulation developments for quantum
chemistry have focused on estimating molecular Hamiltonian

12



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2018.2888987, IBM Journal of
Research and Development

Fig. 3. As quantum devices improve to support the implementation of quantum algorithms for electronic structure calculations, the CADD community
will take advantage of quantum computing by integrating quantum algorithms for computing molecular energies into existing classical quantum chemistry
pipelines. The methods listed in the right can be employed for structure prediction, calculation of binding affinities, calculation of molecular descriptors
for QSAR and to study reactions paths for de novo drug design (Figure 1b).

spectra and preparing eigenstates, with the exception of early
proposals for the calculation of molecular properties [173],
[174]. The main approach for this calculation on FTQC
devices is quantum phase estimation, while approaches for
NISQ devices are mainly based on the VQE algorithm.
Quantum phase estimation approaches require the ability
to implement a quantum operation which has eigenvalues
that are a known function of the eigenvalues of the target
Hamiltonian. The first methods used the dynamical evolution
under the target Hamiltonian, that was implemented using
techniques such as Trotterization [9], [91], [93], [99]–[101],
[104], [105] and approximate decomposition into a sum
of unitaries using a Taylor expansion (Taylorization) [92],
[175]. More recently, an alternative approach called qubiti-
zation [176]–[178], where the evolution employs a quantum
walk operator, has been proposed with near-optimal asymp-
totic performance. Current estimates using the qubitization
technique indicate that calculations on systems of a thousand
spin orbitals might require on the order of a million physical
qubits with error rates of one in ten thousands using state of
the art techniques for error correction, as described in [178].
Although further work is required to tighten these estimates
and further optimize the use of quantum resources, these
results indicate that electronic structure calculations are one
of the first potential applications of FTQC devices.

While FTQC methods are guaranteed to deliver results of
the same quality as FCI, the quality of the VQE calculations
performed on NISQ devices depends on the ansatz employed.
Generally, VQE is performed for the second quantized
chemistry Hamiltonian, where the number of spin-orbitals
corresponds to the number of physical qubits required in the
calculation. For practical purposes, the VQE ansatz should
not be efficiently realizable on a classical computer and
preferably should have a depth that scales at most linearly

with the size of the system. Fortunately, new ansatzes with
linear depth have been recently proposed [85], [118], [179].
More work is required to implement and assess the accuracy
and cost of these ansatzes for relevant molecular benchmark
sets. This should include the study of thermochemical proper-
ties and interaction energies [180], [181]. Also, investigation
of strongly correlated systems such as those involved in
bond-breaking, excited states, and ground-state energy of
transition metal complexes [182] could have direct appli-
cations in the pharmaceutical industry. These assessments
must be complemented with comparisons against state of the
art classical methods in electronic structure, such as density
matrix renormalization group (DMRG) approaches [183],
[184], density-matrix embedding theory (DMET) [185] and
new developments in FCI calculations [186], [187].

Once available, energy solvers based on quantum comput-
ing algorithms could be integrated into hybrid schemes such
as QM/MM, or in general, into methods where different parts
of the system are treated using different levels of approxi-
mations, such as complete active space (CAS) calculations
and ONIOM schemes [188] (See Figure 3). This integration
requires the development of appropriate software interfaces
between the quantum programs and computational chemistry
programs. In this scheme, the quantum computer would act
as a dedicated co-processor for exclusively accelerating parts
of the calculation that require higher accuracy, connecting to
classical computing hardware through software intermediate
libraries. A first example of such libraries is OpenFermion
[189], which incorporates tools for manipulating quantum
chemistry operators, such as expressions in second quantiza-
tion, and translate them into circuits and operators that can
be implemented on a gate-based quantum computer. Along
the same lines, software libraries for integrating quantum
algorithms with existing machine learning libraries have
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started to emerge [190]. More work in this direction will
be essential in the development of useful quantum machine
learning tools for CADD. Recently, the CADD community
has been moving towards consolidating existing tools into
python-based software platforms and towards the use of
cloud computing services [191], which will facilitate their
integration with existing quantum computing libraries.

As quantum libraries for controlling quantum computers
start to emerge [192]–[194], more developments are required
to cover the wide range of calculations common in compu-
tational chemistry, such as molecular geometry optimization,
calculation of molecular properties, molecular spectra, tools
for electronic density analysis, among others. While some
of these calculations could be performed fully on a quantum
processor [173] on an FTQC devices, an easier route in the
NISQ era is to take advantage of the software interfaces
described above to combine the quantum electronic wave-
function solver with classical routines for geometry optimiza-
tion, calculation of vibrational modes, partition functions
for thermodynamics, among others (See Figure 3). Many of
these calculations require the estimation of derivatives of the
electronic energy with respect to molecular coordinates and
expectation values for the calculation of response properties.
Consequently, developing efficient methods for measuring
these properties on quantum computers is an immediate goal
in the field of quantum computing for chemistry with direct
implications in drug discovery.

As quantum hardware becomes more powerful, we expect
quantum algorithms for chemistry and machine learning
to be progressively integrated into CADD. While FTQC
devices are not expected to be available within the next
decade, NISQ devices would be more likely commercialized
in the next 2-4 years [195]. The size of the problems that
will be solved on these computers will be linked to their
specifications (number of qubits and coherence time). For
instance, quantum devices with qubit count N being a few
hundreds of qubits and O(N) coherence time would be
able to perform quantum simulation on molecular systems
with the same number of spin orbitals using VQE. Using
techniques such as active space approach, we could study
molecules of the size of typical drug candidates. This type of
calculation could be useful in the parameterization of force-
fields, in synthesizability and bio-catalysis studies and in
the generation of QSAR descriptors. Calculation of binding
energies using QM/MM techniques will likely require in the
order of a few thousand qubits and will take advantage of
the integration with classical tools, as described in Figure 3.

We are entering a new era of quantum computing where
quantum hardware currently available already allow for rapid
prototyping of quantum algorithms. As a result, the field is
open to early explorations of how quantum devices can be
used for concrete application settings. Drug discovery is a
unique area in the sense that it benefits from advances in
both quantum chemistry and machine learning, making it one
of the first areas that are likely to adopt quantum computing
into its pipelines. This perspective is an invitation to both
the quantum computing and the drug discovery communities

to bridge the technical gap needed to fully materialize the
potential of quantum computing for drug discovery.
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