Abstract
Model-based optimization, in concert with conventional black-box methods, can quickly solve large-scale combinatorial problems. Recently, quantum-inspired modeling schemes based on tensor networks have been developed which have the potential to better identify and represent correlations in datasets. Here, we use a quantum-inspired model-based optimization method TN-GEO to assess the efficacy of these quantum-inspired methods when applied to realistic problems. In this case, the problem of interest is the optimization of a realistic assembly line based on BMW’s currently utilized manufacturing schedule. Through a comparison of optimization techniques, we found that quantum-inspired model-based optimization, when combined with conventional black-box methods, can find lower-cost solutions in certain contexts.